Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 11: 1218292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927860

RESUMO

Background: Over time, COVID-19 testing has significantly declined across the world. However, it is critical to monitor the virus through surveillance. In late 2020, WHO released interim guidance advising the use of the existing Global Influenza Surveillance and Response System (GISRS) for the integrated surveillance of influenza and SARS-CoV-2. Methods: In July 2021, we initiated a pan-India integrated surveillance for influenza and SARS-CoV-2 through the geographically representative network of Virus Research and Diagnostic Laboratories (VRDLs) across 26 hospital and laboratory sites and 70 community sites. A total of 34,260 cases of influenza-like illness (ILI) and Severe acute respiratory infection (SARI) were enrolled from 4 July 2021 to 31 October 2022. Findings: Influenza A(H3) and B/Victoria dominated during 2021 monsoon season while A(H1N1)pdm09 dominated during 2022 monsoon season. The SARS-CoV-2 "variants of concern" (VoC) Delta and Omicron predominated in 2021 and 2022, respectively. Increased proportion of SARI was seen in extremes of age: 90% cases in < 1 year; 68% in 1 to 5 years and 61% in ≥ 8 years age group. Approximately 40.7% of enrolled cases only partially fulfilled WHO ILI and SARI case definitions. Influenza- and SARS-CoV-2-infected comorbid patients had higher risks of hospitalization, ICU admission, and oxygen requirement. Interpretation: The results depicted the varying strains and transmission dynamics of influenza and SARS-CoV-2 viruses over time, thus emphasizing the need to continue and expand surveillance across countries for improved decision making. The study also describes important information related to clinical outcomes of ILI and SARI patients and highlights the need to review existing WHO ILI and SARI case definitions.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Pneumonia , Viroses , Humanos , Influenza Humana/epidemiologia , Teste para COVID-19 , Vírus da Influenza A Subtipo H1N1/genética , Genômica , Índia/epidemiologia
2.
Indian J Med Res ; 155(1): 86-90, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35859435

RESUMO

To implement the strategy of test, track and treat to tackle the ongoing COVID-19 pandemic, the number of real-time RT-PCR-based testing laboratories was increased for diagnosis of SARS-CoV-2 in the country. To ensure reliability of the laboratory results, the Indian Council of Medical Research initiated external quality assessment (EQA) by deploying inter-laboratory quality control (ILQC) activity for these laboratories by nominating 34 quality control (QC) laboratories. This report presents the results of this activity for a period of September 2020 till November 2020. A total of 597 laboratories participated in this activity and 86 per cent of these scored ≥90 per cent concordance with QC laboratories. This ILQC activity showcased India's preparedness in quality diagnosis of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Humanos , Pandemias , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética
3.
Indian J Med Res ; 155(1): 105-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35859437

RESUMO

The WHO emergency use-listed (EUL) COVID-19 vaccines were developed against early strains of SARS-CoV-2. With the emergence of SARS-CoV-2 variants of concern (VOCs) - Alpha, Beta, Gamma, Delta and Omicron, it is necessary to assess the neutralizing activity of these vaccines against the VOCs. PubMed and preprint platforms were searched for literature on neutralizing activity of serum from WHO EUL vaccine recipients, against the VOCs, using appropriate search terms till November 30, 2021. Our search yielded 91 studies meeting the inclusion criteria. The analysis revealed a drop of 0-8.9-fold against Alpha variant, 0.3-42.4-fold against Beta variant, 0-13.8-fold against Gamma variant and 1.35-20-fold against Delta variant in neutralization titres of serum from the WHO EUL COVID-19 vaccine recipients, as compared to early SARS-CoV-2 isolates. The wide range of variability was due to differences in the choice of virus strains selected for neutralization assays (pseudovirus or live virus), timing of serum sample collection after the final dose of vaccine (day 0 to 8 months) and sample size (ranging from 5 to 470 vaccinees). The reasons for this variation have been discussed and the possible way forward to have uniformity across neutralization assays in different laboratories have been described, which will generate reliable data. Though in vitro neutralization studies are a valuable tool to estimate the performance of vaccines against the backdrop of emerging variants, the results must be interpreted with caution and corroborated with field-effectiveness studies.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Proteínas do Envelope Viral
4.
Viruses ; 14(3)2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35337033

RESUMO

SARS-CoV-2/influenza virus co-infection studies have focused on hospitalized patients who usually had grave sequelae. Here, we report SARS-CoV-2/influenza virus co-infection cases from both community and hospital settings reported through integrated ILI/SARI (Influenza Like Illness/Severe Acute Respiratory Infection) sentinel surveillance established by the Indian Council of Medical Research. We describe the disease progression and outcomes in these cases. Out of 13,467 samples tested from 4 July 2021-31 January 2022, only 5 (0.04%) were of SARS-CoV-2/influenza virus co-infection from 3 different sites in distinct geographic regions. Of these, three patients with extremes of age required hospital admission, but none required ICU admission or mechanical ventilation. No mortality was reported. The other two co-infection cases from community settings were managed at home. This is the first report on SARS-CoV-2/Influenza virus co-infection from community as well as hospital settings in India and shows that influenza viruses are circulating in the community even during COVID-19. The results emphasize the need for continuous surveillance for multiple respiratory pathogens for effective public health management of ILI/SARI cases in line with the WHO (World Health Organization) recommendations.


Assuntos
COVID-19 , Coinfecção , Influenza Humana , Orthomyxoviridae , COVID-19/epidemiologia , Coinfecção/epidemiologia , Humanos , Influenza Humana/complicações , Influenza Humana/epidemiologia , SARS-CoV-2 , Estações do Ano , Vigilância de Evento Sentinela
5.
PLoS One ; 17(2): e0263736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35134089

RESUMO

Sudden emergence and rapid spread of COVID-19 created an inevitable need for expansion of the COVID-19 laboratory testing network across the world. The strategy to test-track-treat was advocated for quick detection and containment of the disease. Being the second most populous country in the world, India was challenged to make COVID-19 testing available and accessible in all parts of the country. The molecular laboratory testing network was augmented expeditiously, and number of laboratories was increased from one in January 2020 to 2951 till mid-September, 2021. This rapid expansion warranted the need to have inbuilt systems of quality control/ quality assurance. In addition to the ongoing inter-laboratory quality control (ILQC), India implemented an External Quality Assurance Program (EQAP) with assistance from World Health Organization (WHO) and Royal College of Pathologists, Australasia. Out of the 953 open system rRTPCR laboratories in both public and private sector who participated in the first round of EQAP, 891(93.4%) laboratories obtained a passing score of > = 80%. The satisfactory performance of Indian COVID-19 testing laboratories has boosted the confidence of the public and policy makers in the quality of testing. ILQC and EQAP need to continue to ensure adherence of the testing laboratories to the desired quality standards.


Assuntos
Teste para COVID-19/normas , COVID-19/diagnóstico , Técnicas de Laboratório Clínico/normas , Laboratórios/normas , Programas de Rastreamento/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , COVID-19/epidemiologia , COVID-19/genética , COVID-19/virologia , Humanos , Índia/epidemiologia , Controle de Qualidade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos
7.
Viruses ; 13(9)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34578363

RESUMO

From March to June 2021, India experienced a deadly second wave of COVID-19, with an increased number of post-vaccination breakthrough infections reported across the country. To understand the possible reason for these breakthroughs, we collected 677 clinical samples (throat swab/nasal swabs) of individuals from 17 states/Union Territories of the country who had received two doses (n = 592) and one dose (n = 85) of vaccines and tested positive for COVID-19. These cases were telephonically interviewed and clinical data were analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both groups. Analysis of both groups determined that 86.69% (n = 443) of them belonged to the Delta variant, along with Alpha, Kappa, Delta AY.1, and Delta AY.2. The Delta variant clustered into four distinct sub-lineages. Sub-lineage I had mutations in ORF1ab A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, and A6319V, and in N G215C; Sub-lineage II had mutations in ORF1ab P309L, A3209V, V3718A, G5063S, P5401L, and ORF7a L116F; Sub-lineage III had mutations in ORF1ab A3209V, V3718A, T3750I, G5063S, and P5401L and in spike A222V; Sub-lineage IV had mutations in ORF1ab P309L, D2980N, and F3138S and spike K77T. This study indicates that majority of the breakthrough COVID-19 clinical cases were infected with the Delta variant, and only 9.8% cases required hospitalization, while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Genômica , SARS-CoV-2/genética , Adulto , COVID-19/diagnóstico , Comorbidade , Surtos de Doenças , Feminino , Geografia Médica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Filogenia , Vigilância em Saúde Pública , SARS-CoV-2/classificação
8.
Indian J Med Res ; 153(1 & 2): 93-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361645

RESUMO

BACKGROUND & OBJECTIVES: The COVID-19 pandemic has emerged as a global public health crisis and research groups worldwide are engaged in developing vaccine candidates to curb its transmission, with a few vaccines having progressed to advanced stages of clinical trials. The aim of this systematic review was to compare immunogenicity and protective efficacy of various SARS-CoV-2 vaccine candidates tested in non-human primate (NHP) models. METHODS: Literature on effect of SARS-CoV-2 vaccines in NHP models reported on PubMed and preprint platforms (medRxiv and bioRxiv) till October 22, 2020, was searched with the following terms: coronavirus vaccine, COVID-19 vaccine, SARS-CoV-2 vaccine, nonhuman primate, and rhesus macaque. RESULTS: Our search yielded 19 studies, which reported immune response elicited by 18 vaccine candidates in NHP. All the vaccines induced detectable neutralizing antibody (NAb) titres in the serum of vaccinated animals, with some showing effective viral clearance from various organs. The vaccinated animals also showed nil to mild histopathological changes in their lungs compared to placebo groups in the trials that performed necropsy. INTERPRETATION & CONCLUSIONS: Our findings highlighted onset of quick immunogenicity and protective efficacy of mRNA-1273, followed by Ad26.CoV2.S, NVX-CoV2373, BNT162b2, RBD and BBV152 vaccine candidates in preclinical trials as compared to the others. NHP data also showed correlation with clinical trial data available for a few vaccines. Preclinical trials of COVID-19 vaccine candidates in NHPs yielded promising results, with some candidates faring better than others.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Primatas , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Modelos Animais de Doenças , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...