Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(18): 3229-3231, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738960

RESUMO

We talk to corresponding author Amy Lee and co-authors Shaoni Mukhopadhyay and Maria Amodeo about their scientific journey, research interests, and some behind-the-scenes details of their paper "eIF3d controls the persistent integrated stress response" (this issue of Molecular Cell).

2.
Mol Cell ; 83(18): 3303-3313.e6, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37683648

RESUMO

Cells respond to intrinsic and extrinsic stresses by reducing global protein synthesis and activating gene programs necessary for survival. Here, we show that the integrated stress response (ISR) is driven by the non-canonical cap-binding protein eIF3d that acts as a critical effector to control core stress response orchestrators, the translation factor eIF2α and the transcription factor ATF4. We find that during persistent stress, eIF3d activates the translation of the kinase GCN2, inducing eIF2α phosphorylation and inhibiting general protein synthesis. In parallel, eIF3d upregulates the m6A demethylase ALKBH5 to drive 5' UTR-specific demethylation of stress response genes, including ATF4. Ultimately, this cascade converges on ATF4 expression by increasing mRNA engagement of translation machinery and enhancing ribosome bypass of upstream open reading frames (uORFs). Our results reveal that eIF3d acts in a life-or-death decision point during chronic stress and uncover a synergistic signaling mechanism in which translational cascades complement transcriptional amplification to control essential cellular processes.


Assuntos
Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Regiões 5' não Traduzidas , Fator de Iniciação 2 em Eucariotos/genética , Fases de Leitura Aberta , Fosforilação , Proteínas de Ligação ao Cap de RNA , Humanos
3.
J Biol Chem ; 296: 100175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303627

RESUMO

Methods for rapid and high-throughput screening of transcription in vitro to examine reaction conditions, enzyme mutants, promoter variants, and small molecule modulators can be extremely valuable tools. However, these techniques may be difficult to establish or inaccessible to many researchers. To develop a straightforward and cost-effective platform for assessing transcription in vitro, we used the "Broccoli" RNA aptamer as a direct, real-time fluorescent transcript readout. To demonstrate the utility of our approach, we screened the effect of common reaction conditions and components on bacteriophage T7 RNA polymerase (RNAP) activity using a common quantitative PCR instrument for fluorescence detection. Several essential conditions for in vitro transcription by T7 RNAP were confirmed with this assay, including the importance of enzyme and substrate concentrations, covariation of magnesium and nucleoside triphosphates, and the effects of several typical additives. When we used this method to assess all possible point mutants of a canonical T7 RNAP promoter, our results coincided well with previous reports. This approach should translate well to a broad variety of bacteriophage in vitro transcription systems and provides a platform for developing fluorescence-based readouts of more complex transcription systems in vitro.


Assuntos
Aptâmeros de Nucleotídeos/genética , Bioensaio , RNA Polimerases Dirigidas por DNA/genética , DNA/genética , Reação em Cadeia da Polimerase/métodos , Proteínas Virais/genética , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , DNA/química , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Magnésio/química , Magnésio/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Regiões Promotoras Genéticas , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia , Espectrometria de Fluorescência , Espermidina/química , Espermidina/farmacologia , Frações Subcelulares/metabolismo , Transcrição Gênica , Proteínas Virais/química , Proteínas Virais/metabolismo
4.
RNA ; 27(1): 66-79, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33023933

RESUMO

Most mammalian cytoplasmic tRNAs contain ribothymidine (T) and pseudouridine (Ψ) at positions 54 and 55, respectively. However, some tRNAs contain Ψ at both positions. Several Ψ54-containing tRNAs function as primers in retroviral DNA synthesis. The Ψ54 of these tRNAs is produced by PUS10, which can also synthesize Ψ55. Two other enzymes, TRUB1 and TRUB2, can also produce Ψ55. By nearest-neighbor analyses of tRNAs treated with recombinant proteins and subcellular extracts of wild-type and specific Ψ55 synthase knockdown cells, we determined that while TRUB1, PUS10, and TRUB2 all have tRNA Ψ55 synthase activities, they have different tRNA structural requirements. Moreover, these activities are primarily present in the nucleus, cytoplasm, and mitochondria, respectively, suggesting a compartmentalization of Ψ55 synthase activity. TRUB1 produces the Ψ55 of most elongator tRNAs, but cytoplasmic PUS10 produces both Ψs of the tRNAs with Ψ54Ψ55. The nuclear isoform of PUS10 is catalytically inactive and specifically binds the unmodified U54U55 versions of Ψ54Ψ55-containing tRNAs, as well as the A54U55-containing tRNAiMet This binding inhibits TRUB1-mediated U55 to Ψ55 conversion in the nucleus. Consequently, the U54U55 of Ψ54Ψ55-containing tRNAs are modified by the cytoplasmic PUS10. Nuclear PUS10 does not bind the U55 versions of T54Ψ55- and A54Ψ55-containing elongator tRNAs. Therefore, TRUB1 is able to produce Ψ55 in these tRNAs. In summary, the tRNA Ψ55 synthase activities of TRUB1 and PUS10 are not redundant but rather are compartmentalized and act on different sets of tRNAs. The significance of this compartmentalization needs further study.


Assuntos
Núcleo Celular/genética , Citoplasma/genética , Hidroliases/genética , Mitocôndrias/genética , Pseudouridina/metabolismo , RNA de Transferência de Alanina/genética , RNA de Transferência de Metionina/genética , RNA de Transferência de Triptofano/genética , Animais , Sítios de Ligação , Compartimento Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Hidroliases/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/metabolismo , Células PC-3 , Ligação Proteica , RNA de Transferência de Alanina/metabolismo , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Triptofano/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
5.
RNA ; 26(4): 396-418, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31919243

RESUMO

Archaea and eukaryotes, in addition to protein-only enzymes, also possess ribonucleoproteins containing an H/ACA guide RNA plus four proteins that produce pseudouridine (Ψ). Although typical conditions for these RNA-guided reactions are known, certain variant conditions allow pseudouridylation. We used mutants of the two stem-loops of the Haloferax volcanii sR-h45 RNA that guides three pseudouridylations in 23S rRNA and their target RNAs to characterize modifications under various atypical conditions. The 5' stem-loop produces Ψ2605 and the 3' stem-loop produces Ψ1940 and Ψ1942. The latter two modifications require unpaired "UVUN" (V = A, C, or G) in the target and ACA box in the guide. Ψ1942 modification requires the presence of U1940 (or Ψ1940). Ψ1940 is not produced in the Ψ1942-containing substrate, suggesting a sequential modification of the two residues. The ACA box of a single stem-loop guide is not required when typically unpaired "UN" is up to 17 bases from its position in the guide, but is needed when the distance increases to 19 bases or the N is paired. However, ANA of the H box of the double stem-loop guide is needed even for the 5' typical pseudouridylation. The most 5' unpaired U in a string of U's is converted to Ψ, and in the absence of an unpaired U, a paired U can also be modified. Certain mutants of the Cbf5 protein affect pseudouridylation by the two stem-loops of sR-h45 differently. This study will help elucidate the conditions for production of nonconstitutive Ψ's, determine functions for orphan H/ACA RNAs and in target designing.


Assuntos
Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , RNA Arqueal/genética , RNA Guia de Cinetoplastídeos/genética , Proteínas Arqueais/metabolismo , Haloferax volcanii/genética , Motivos de Nucleotídeos , Pseudouridina/química , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo
6.
RNA ; 25(3): 336-351, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30530625

RESUMO

The nearly conserved U54 of tRNA is mostly converted to a version of ribothymidine (T) in Bacteria and eukaryotes and to a version of pseudouridine (Ψ) in Archaea. Conserved U55 is nearly always modified to Ψ55 in all organisms. Orthologs of TrmA and TruB that produce T54 and Ψ55, respectively, in Bacteria and eukaryotes are absent in Archaea. Pus10 produces both Ψ54 and Ψ55 in Archaea. Pus10 orthologs are found in nearly all sequenced archaeal and most eukaryal genomes, but not in yeast and bacteria. This coincides with the presence of Ψ54 in most archaeal tRNAs and some animal tRNAs, but its absence from yeast and bacteria. Moreover, Ψ54 is found in several tRNAs that function as primers for retroviral DNA synthesis. Previously, no eukaryotic tRNA Ψ54 synthase had been identified. We show here that human Pus10 can produce Ψ54 in select tRNAs, including tRNALys3, the primer for HIV reverse transcriptase. This synthase activity of Pus10 is restricted to the cytoplasm and is distinct from nuclear Pus10, which is known to be involved in apoptosis. The sequence GUUCAm1AAUC (m1A is 1-methyladenosine) at position 53-61 of tRNA along with a stable acceptor stem results in maximum Ψ54 synthase activity. This recognition sequence is unique for a Ψ synthase in that it contains another modification. In addition to Ψ54, SF9 cells-derived recombinant human Pus10 can also generate Ψ55, even in tRNAs that do not contain the Ψ54 synthase recognition sequence. This activity may be redundant with that of TruB.


Assuntos
Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Pseudouridina/biossíntese , RNA de Transferência/genética , Animais , Archaea/genética , Archaea/metabolismo , Sequência de Bases , Citoplasma , Ativação Enzimática , Humanos , Mamíferos/genética , Proteólise , Processamento Pós-Transcricional do RNA , RNA Arqueal , Proteínas Recombinantes , Elementos de Resposta , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...