Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmaceutics ; 14(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890214

RESUMO

Despite their incredible contribution to fighting viral infections, antiviral viral resistance is an increasing concern and often arises due to unfavorable physicochemical and biopharmaceutical properties. To address this kind of issue, lipid nanocapsules (LNC) are developed in this study, using efavirenz (EFV) as a drug model. EFV solubility was assessed in water, Labrafac Lipophile and medium chain triglycerides oil (MCT oil). EFV turned out to be more soluble in the two latter dissolving media (solubility > 250 mg/mL); hence, given its affordability, MCT oil was used for LNC formulation. LNC were prepared using a low-energy method named phase inversion, and following a design of experiments process. This one resulted in polynomial models that predicted LNC particle size, polydispersity index and zeta potential that were, respectively, around 50 nm, below 0.2 and below −33 mV, for the optimized formulations. Once synthesized, we were able to achieve an encapsulation efficacy of 87%. On the other hand, high EFV release from the LNC carrier was obtained in neutral medium as compared to acid milieu (pH 4) with, respectively, 42 and 27% EFV release within 74 h. Other characterization techniques were applied and further supported the successful encapsulation of EFV in LNCs in an amorphous form. Stability studies revealed that the developed LNC were quite stable over the period of 28 days. Ultimately, LNCs have been demonstrated to improve the biopharmaceutical properties of EFV and could therefore be used to fight against antiviral resistance.

2.
Braz. J. Pharm. Sci. (Online) ; 58: e20074, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403714

RESUMO

Abstract Morinda lucida leaves are largely used by Congolese traditional healers for the treatment of uncomplicated malaria. The antimalarial activity of their ethanolic extract has been confirmed both in vitro and in vivo. However, the development of relevant formulations for potential clinical application is hampered since the active ingredients contained in this extract exhibit poor water solubility and low oral bioavailability. Hence, this work aims not only to develop self-nanoemulsifying drug delivery systems (SNEDDSs) for oral delivery of the ethanolic extract of Morinda lucida (ML) but also to evaluate its oral antimalarial activity alone and in combination with other Congolese ethanolic plant extracts (Alstonia congensis, Garcinia kola, Lantana camara, Morinda morindoides or Newbouldia laevis). Based on the solubility of these different extracts in various excipients, SNEDDS preconcentrates were prepared, and 200 mg/g of each plant extract were suspended in these formulations. The 4-day suppressive Peter's test revealed a significant parasite growth inhibiting effect for all the extract-based SNEDDS (from 55.0 to 82.4 %) at 200 mg/kg. These activities were higher than those of their corresponding ethanolic suspensions given orally at the same dose (p<0.05). The combination therapy of MLSNEDDS with other extract-based SNEDDS exhibited remarkable chemosuppression, ranging from 74.3 % to 95.8 % (for 100 + 100 mg/kg) and 86.7 % to 95.5 % (for 200 + 200 mg/kg/day). In regard to these findings, SNEDDS suspension may constitute a promising approach for oral delivery of ML alone or in combination with other antimalarial plants.


Assuntos
Plantas/metabolismo , Preparações Farmacêuticas/administração & dosagem , Extratos Vegetais/administração & dosagem , Morinda/efeitos adversos , Antimaláricos/análise , Técnicas In Vitro/métodos , Sistemas de Liberação de Medicamentos , Dosagem , Malária/tratamento farmacológico
3.
Pharmaceutics ; 13(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959323

RESUMO

The antimicrobial drugs currently used for the management of tuberculosis (TB) exhibit poor bioavailability that necessitates prolonged treatment regimens and high dosing frequency to achieve optimal therapeutic outcomes. In addition, these agents cause severe adverse effects, as well as having detrimental interactions with other drugs used in the treatment of comorbid conditions such as HIV/AIDS. The challenges associated with the current TB regimens contribute to low levels of patient adherence and, consequently, the development of multidrug-resistant TB strains. This has led to the urgent need to develop newer drug delivery systems to improve the treatment of TB. Targeted drug delivery systems provide higher drug concentrations at the infection site, thus leading to reduced incidences of adverse effects. Lipid-based nanocarriers have proven to be effective in improving the solubility and bioavailability of antimicrobials whilst decreasing the incidence of adverse effects through targeted delivery. The potential application of lipid-based carriers such as liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, nano and microemulsions, and self-emulsifying drug delivery systems for the treatment of TB is reviewed herein. The composition of the investigated lipid-based carriers, their characteristics, and their influence on bioavailability, toxicity, and sustained drug delivery are also discussed. Overall, lipid-based systems have shown great promise in anti-TB drug delivery applications. The summary of the reviewed data encourages future efforts to boost the translational development of lipid-based nanocarriers to improve TB therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...