Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1012032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394332

RESUMO

Lyme disease (LD) caused by Borrelia burgdorferi is among the most important human vector borne diseases for which there is no effective prevention method. Identification of tick saliva transmission factors of the LD agent is needed before the highly advocated tick antigen-based vaccine could be developed. We previously reported the highly conserved Ixodes scapularis (Ixs) tick saliva serpin (S) 17 (IxsS17) was highly secreted by B. burgdorferi infected nymphs. Here, we show that IxsS17 promote tick feeding and enhances B. burgdorferi colonization of the host. We show that IxsS17 is not part of a redundant system, and its functional domain reactive center loop (RCL) is 100% conserved in all tick species. Yeast expressed recombinant (r) IxsS17 inhibits effector proteases of inflammation, blood clotting, and complement innate immune systems. Interestingly, differential precipitation analysis revealed novel functional insights that IxsS17 interacts with both effector proteases and regulatory protease inhibitors. For instance, rIxsS17 interacted with blood clotting proteases, fXII, fX, fXII, plasmin, and plasma kallikrein alongside blood clotting regulatory serpins (antithrombin III and heparin cofactor II). Similarly, rIxsS17 interacted with both complement system serine proteases, C1s, C2, and factor I and the regulatory serpin, plasma protease C1 inhibitor. Consistently, we validated that rIxsS17 dose dependently blocked deposition of the complement membrane attack complex via the lectin complement pathway and protected complement sensitive B. burgdorferi from complement-mediated killing. Likewise, co-inoculating C3H/HeN mice with rIxsS17 and B. burgdorferi significantly enhanced colonization of mouse heart and skin organs in a reverse dose dependent manner. Taken together, our data suggests an important role for IxsS17 in tick feeding and B. burgdorferi colonization of the host.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Serpinas , Camundongos , Animais , Humanos , Serpinas/metabolismo , Saliva/metabolismo , Peptídeo Hidrolases , Camundongos Endogâmicos C3H , Proteínas do Sistema Complemento , Endopeptidases , Sistema Imunitário/metabolismo
2.
Parasit Vectors ; 17(1): 36, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281054

RESUMO

BACKGROUND: When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS: Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS: Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS: Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.


Assuntos
Rhipicephalus , Animais , Feminino , Bovinos , Rhipicephalus/fisiologia , Saliva/química , Proteômica , Proteínas de Artrópodes/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
3.
J Med Entomol ; 61(1): 245-249, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897421

RESUMO

White-tailed deer Odocoileus virginianus (Zimmermann) (Artiodactyla: Cervidae) are the main host for adult Ixodes scapularis Say (Acari: Ixodidae) (blacklegged tick) and all stages of Amblyomma americanum Linnaeus (Acari: Ixodidae) (lone star tick). However, literature describing the feeding and reproductive parameters of these tick species when feeding on this host is limited. We experimentally infested white-tailed deer with adult pairs of either I. scapularis or A. americanum to improve our understanding of these tick-host relationships. Our study used tick-naïve white-tailed deer and restricted host grooming throughout the infestation. For I. scapularis, the days to repletion (mean ±â€…SE, 6.04 ±â€…0.07), engorgement weight of replete females (0.20 ±â€…0.0032 g), duration of oviposition (32 ±â€…0.45 d), egg mass weight (0.10 ±â€…0.0027 g), and number of eggs laid per tick (1,803.00 ±â€…49.00) were recorded. Data from A. americanum were also recorded, including days to repletion (11.00 ±â€…0.063), engorgement weight of replete females (0.63 ±â€…0.025 g), duration of oviposition (37.00 ±â€…1.30 d), egg mass weight (0.34 ±â€…0.017 g), and number of eggs laid per tick (5,873.00 ±â€…291.00). These biological parameter data could be used as variables in models (e.g., LYMESIM 2.0) to determine how white-tailed deer influence I. scapularis and A. americanum populations in nature, and to evaluate the protective efficacy of tick-antigen-based antitick vaccines.


Assuntos
Cervos , Ixodes , Ixodidae , Infestações por Carrapato , Animais , Feminino , Amblyomma , Infestações por Carrapato/veterinária
4.
Front Cell Infect Microbiol ; 13: 1253670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965264

RESUMO

Tick serine protease inhibitors (serpins) play crucial roles in tick feeding and pathogen transmission. We demonstrate that Ixodes scapularis (Ixs) nymph tick saliva serpin (S) 41 (IxsS41), secreted by Borrelia burgdorferi (Bb)-infected ticks at high abundance, is involved in regulating tick evasion of host innate immunity and promoting host colonization by Bb. Recombinant (r) proteins were expressed in Pichia pastoris, and substrate hydrolysis assays were used to determine. Ex vivo (complement and hemostasis function related) and in vivo (paw edema and effect on Bb colonization of C3H/HeN mice organs) assays were conducted to validate function. We demonstrate that rIxsS41 inhibits chymase and cathepsin G, pro-inflammatory proteases that are released by mast cells and neutrophils, the first immune cells at the tick feeding site. Importantly, stoichiometry of inhibition analysis revealed that 2.2 and 2.8 molecules of rIxsS41 are needed to 100% inhibit 1 molecule of chymase and cathepsin G, respectively, suggesting that findings here are likely events at the tick feeding site. Furthermore, chymase-mediated paw edema, induced by the mast cell degranulator, compound 48/80 (C48/80), was blocked by rIxsS41. Likewise, rIxsS41 reduced membrane attack complex (MAC) deposition via the alternative and lectin complement activation pathways and dose-dependently protected Bb from complement killing. Additionally, co-inoculating C3H/HeN mice with Bb together with rIxsS41 or with a mixture (rIxsS41 and C48/80). Findings in this study suggest that IxsS41 markedly contributes to tick feeding and host colonization by Bb. Therefore, we conclude that IxsS41 is a potential candidate for an anti-tick vaccine to prevent transmission of the Lyme disease agent.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Serpinas , Camundongos , Animais , Ixodes/fisiologia , Quimases , Ninfa , Catepsina G , Saliva/metabolismo , Camundongos Endogâmicos C3H , Inflamação , Serpinas/metabolismo , Proteínas do Sistema Complemento , Edema
5.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986907

RESUMO

Hematophagous ectoparasites, such as ticks, rely on impaired wound healing for skin attachment and blood feeding. Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to arthropod-borne diseases. Here, we used orthogonal approaches combining single-cell RNA sequencing (scRNAseq), flow cytometry, murine genetics, and intravital microscopy to demonstrate how tick extracellular vesicles (EVs) disrupt networks involved in tissue repair. Impairment of EVs through silencing of the SNARE protein vamp33 negatively impacted ectoparasite feeding and survival in three medically relevant tick species, including Ixodes scapularis. Furthermore, I. scapularis EVs affected epidermal γδ T cell frequencies and co-receptor expression, which are essential for keratinocyte function. ScRNAseq analysis of the skin epidermis in wildtype animals exposed to vamp33-deficient ticks revealed a unique cluster of keratinocytes with an overrepresentation of pathways connected to wound healing. This biological circuit was further implicated in arthropod fitness when tick EVs inhibited epithelial proliferation through the disruption of phosphoinositide 3-kinase activity and keratinocyte growth factor levels. Collectively, we uncovered a tick-targeted impairment of tissue repair via the resident γδ T cell-keratinocyte axis, which contributes to ectoparasite feeding.

6.
Ticks Tick Borne Dis ; 14(6): 102251, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708803

RESUMO

Studies on the transcriptional control of gene expression are crucial to understand changes in organism's physiological or cellular conditions. To obtain reliable data on mRNA amounts and the estimation of gene expression levels, it is crucial to normalize the target gene with one or more internal reference gene(s). However, the use of constitutive genes as reference genes is controversial, as their expression patterns are sometimes more complex than previously thought. In various arthropod vectors, including ticks, several constitutive genes have been identified by studying gene expression in different tissues and life stages. The cattle tick Rhipicephalus microplus is a major vector for several pathogens and is widely distributed in tropical and subtropical regions globally. Tick developmental physiology is an essential aspect of research, particularly embryogenesis, where many important developmental events occur, thus the identification of stable reference genes is essential for the interpretation of reliable gene expression data. This study aimed to identify and select R. microplus housekeeping genes and evaluate their stability during embryogenesis. Reference genes used as internal control in molecular assays were selected based on previous studies. These genes were screened by quantitative PCR (qPCR) and tested for gene expression stability during embryogenesis. Results demonstrated that the relative stability of reference genes varied at different time points during the embryogenesis. The GeNorm tool showed that elongation factor 1α (Elf1a) and ribosomal protein L4 (Rpl4) were the most stable genes, while H3 histone family 3A (Hist3A) and ribosomal protein S18 (RpS18) were the least stable. The NormFinder tool showed that Rpl4 was the most stable gene, while the ranking of Elf1a was intermediate in all tested conditions. The BestKeeper tool showed that Rpl4 and cyclophilin A (CycA) were the more and less stable genes, respectively. These data collectively demonstrate that Rpl4, Elf1a, and GAPDH are suitable internal controls for normalizing qPCR during R. microplus embryogenesis. These genes were consistently identified as the most stable in various analysis methods employed in this study. Thus, findings presented in this study offer valuable information for the study of gene expression during embryogenesis in R. microplus.


Assuntos
Rhipicephalus , Animais , Rhipicephalus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vetores Artrópodes , Bioensaio , Desenvolvimento Embrionário/genética
7.
Int J Biol Macromol ; 253(Pt 1): 126545, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652342

RESUMO

Understanding the physiological and molecular regulation of tick feeding is necessary for developing intervention strategies to curb disease transmission by ticks. Pharmacological activation of ATP-gated inward rectifier potassium (KATP) channels reduced fluid secretion from isolated salivary gland and blood feeding in the lone star tick, Amblyomma americanum, yet the temporal expression pattern of KATP channel proteins remained unknown. KATP channels were highly expressed in type II and III acini in off-host stage and early feeding phase ticks, yet expression was reduced in later stages of feeding. We next assessed KATP channel regulation of the secreted proteome of tick saliva. LC-MS/MS analysis identified 40 differentially secreted tick saliva proteins after exposure to KATP activators or inhibitors. Secretion of previously validated tick saliva proteins that promote tick feeding, AV422, AAS27, and AAS41 were significantly reduced by upwards of 8 log units in ticks exposed to KATP channel activators when compared to untreated ticks. Importantly, activation of KATP channels inhibited tick feeding and vice versa for KATP channel inhibitors. Data indicate KATP channels regulate tick feeding biology by controlling secretion of pro-feeding proteins that are essential during early feeding phases, which provides insights into physiological and molecular regulation of tick feeding behavior.


Assuntos
Ixodidae , Canais de Potássio Corretores do Fluxo de Internalização , Carrapatos , Animais , Amblyomma , Ixodidae/metabolismo , Canais KATP/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Carrapatos/metabolismo , Proteínas e Peptídeos Salivares , Trifosfato de Adenosina/metabolismo
8.
Sci Rep ; 12(1): 21300, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494396

RESUMO

Ixodes scapularis long-term blood feeding behavior is facilitated by a tick secreted bio adhesive (tick cement) that attaches tick mouthparts to skin tissue and prevents the host from dislodging the attached tick. Understanding tick cement formation is highly sought after as its disruption will prevent tick feeding. This study describes proteins that form the inner core layer of I. scapularis tick cement as disrupting these proteins will likely stop formation of the outer cortical layer. The inner core cement layer completes formation by 24 h of tick attachment. Thus, we used laser-capture microdissection to isolate cement from cryosections of 6 h and 24 h tick attachment sites and to distinguish between early and late inner core cement proteins. LC-MS/MS analysis identified 138 tick cement proteins (TCPs) of which 37 and 35 were unique in cement of 6 and 24 h attached ticks respectively. We grouped TCPs in 14 functional categories: cuticular protein (16%), tick specific proteins of unknown function, cytoskeletal proteins, and enzymes (13% each), enzymes (10%), antioxidant, glycine rich, scaffolding, heat shock, histone, histamine binding, proteases and protease inhibitors, and miscellaneous (3-6% each). Gene ontology analysis confirm that TCPs are enriched for bio adhesive properties. Our data offer insights into tick cement bonding patterns and set the foundation for understanding the molecular basis of I. scapularis tick cement formation.


Assuntos
Ixodes , Animais , Ixodes/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas de Artrópodes/genética
9.
Expert Rev Proteomics ; 18(12): 1099-1116, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34904495

RESUMO

BACKGROUND: Ticks are obligate hematophagous arthropods that synthesize the glycan Galα1-3Galß1-(3)4GlcNAc-R (α-Gal) associated with the alpha-gal syndrome (AGS) or allergy to mammalian meat consumption. RESEARCH DESIGN AND METHODS: In this study, we used a proteomics approach to characterize tick proteins in salivary glands (sialome SG), secreted saliva (sialome SA) and with α-Gal modification (alphagalactome SG and SA) in model tick species associated with the AGS in the United States (Amblyomma americanum) and Australia (Ixodes holocyclus). Selected proteins reactive to sera (IgE) from patients with AGS were identified to advance in the identification of possible proteins associated with the AGS. For comparative analysis, the α-Gal content was measured in various tick species. RESULTS: The results confirmed that ticks produce proteins with α-Gal modifications and secreted into saliva during feeding. Proteins identified in tick alphagalactome SA by sera from patients with severe AGS symptomatology may constitute candidate disease biomarkers. CONCLUSIONS: The results support the presence of tick-derived proteins with α-Gal modifications in the saliva with potential implications in AGS and other disorders and protective capacity against tick infestations and pathogen infection. Future research should focus on the characterization of the function of tick glycoproteins with α-Gal in tick biology and AGS.


Assuntos
Saliva , Carrapatos , Animais , Biomarcadores , Hipersensibilidade Alimentar , Humanos , Glândulas Salivares
10.
BMC Genomics ; 22(1): 152, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663385

RESUMO

BACKGROUND: Lyme disease (LD) caused by Borrelia burgdorferi is the most prevalent tick-borne disease. There is evidence that vaccines based on tick proteins that promote tick transmission of B. burgdorferi could prevent LD. As Ixodes scapularis nymph tick bites are responsible for most LD cases, this study sought to identify nymph tick saliva proteins associated with B. burgdorferi transmission using LC-MS/MS. Tick saliva was collected using a non-invasive method of stimulating ticks (uninfected and infected: unfed, and every 12 h during feeding through 72 h, and fully-fed) to salivate into 2% pilocarpine-PBS for protein identification using LC-MS/MS. RESULTS: We identified a combined 747 tick saliva proteins of uninfected and B. burgdorferi infected ticks that were classified into 25 functional categories: housekeeping-like (48%), unknown function (18%), protease inhibitors (9%), immune-related (6%), proteases (8%), extracellular matrix (7%), and small categories that account for <5% each. Notably, B. burgdorferi infected ticks secreted high number of saliva proteins (n=645) than uninfected ticks (n=376). Counter-intuitively, antimicrobial peptides, which function to block bacterial infection at tick feeding site were suppressed 23-85 folds in B. burgdorferi infected ticks. Similar to glycolysis enzymes being enhanced in mammalian cells exposed to B. burgdorferi : eight of the 10-glycolysis pathway enzymes were secreted at high abundance by B. burgdorferi infected ticks. Of significance, rabbits exposed to B. burgdorferi infected ticks acquired potent immunity that caused 40-60% mortality of B. burgdorferi infected ticks during the second infestation compared to 15-28% for the uninfected. This might be explained by ELISA data that show that high expression levels of immunogenic proteins in B. burgdorferi infected ticks. CONCLUSION: Data here suggest that B. burgdorferi infection modified protein content in tick saliva to promote its survival at the tick feeding site. For instance, enzymes; copper/zinc superoxide dismutase that led to production of H2O2 that is toxic to B. burgdorferi were suppressed, while, catalase and thioredoxin that neutralize H2O2, and pyruvate kinase which yields pyruvate that protects Bb from H2O2 killing were enhanced. We conclude data here is an important resource for discovery of effective antigens for a vaccine to prevent LD.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Cromatografia Líquida , Peróxido de Hidrogênio , Ninfa , Coelhos , Saliva , Espectrometria de Massas em Tandem
12.
Int J Parasitol ; 50(12): 931-943, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32668271

RESUMO

Protease inhibitors play crucial roles in parasite development and survival, modulating the immune responses of their vertebrate hosts. Members of the serpin family are irreversible inhibitors of serine proteases and regulate systems related to defence against parasites. Limited information is currently available on protease inhibitors from the liver fluke Fasciola hepatica. In this study, we characterised four serpins from F. hepatica (FhS-1-FhS-4). Biochemical characterisation revealed that recombinant FhS-2 (rFhS) inhibits the activity of human neutrophil cathepsin G, while rFhS-4 inhibits the activity of bovine pancreatic chymotrypsin and cathepsin G. Consistent with inhibitor function profiling data, rFhS-4 inhibited cathepsin G-activated platelet aggregation in a dose-responsive manner.Similar to other serpins, rFhS2 and rFhS-4 bind to heparin with high affinity. Tissue localisation demonstrated that these serpins have different spatial distributions. FhS-2 is localised in the ovary, while FhS-4 was found in gut cells. Both of them co-localised in the spines within the tegument. These findings provide the basis for study of functional roles of these proteins as part of an immune evasion mechanism in the adult fluke, and in protection of eggs to ensure parasite life cycle continuity. Further understanding of serpins from the liver fluke may lead to the discovery of novel anti-parasitic interventions.


Assuntos
Fasciola hepatica , Interações Hospedeiro-Parasita , Serpinas , Animais , Catepsina G/antagonistas & inibidores , Bovinos , Quimotripsina/antagonistas & inibidores , Fasciola hepatica/enzimologia , Feminino , Humanos
13.
Int J Biol Macromol ; 156: 1007-1021, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320803

RESUMO

Ticks inject serine protease inhibitors (serpins) into their feeding sites to evade serine protease-mediated host defenses against tick-feeding. This study describes two highly identitical (97%) but functionally different Amblyomma americanum tick saliva serpins (AAS41 and 46) that are secreted at the inception of tick-feeding. We show that AAS41, which encodes a leucine at the P1 site inhibits inflammation system proteases: chymase (SI = 3.23, Ka = 5.6 ± 3.7X103M-1 s-1) and α-chymotrypsin (SI = 3.18, Ka = 1.6 ± 4.1X104M-1 s-1), while AAS46, which encodes threonine has no inhibitory activity. Similary, rAAS41 inhibits rMCP-1 purified from rat peritonuem derived mast cells. Consistently, rAAS41 inhibits chymase-mediated inflammation induced by compound 48/80 in rat paw edema and vascular permeability models. Native AAS41/46 proteins are among tick saliva immunogens that provoke anti-tick immunity in repeatedly infested animals as revealed by specific reactivity with tick immune sera. Of significance, native AAS41/46 play critical tick-feeding functions in that RNAi-mediated silencing caused ticks to ingest significantly less blood. Importantly, monospecific antibodies to rAAS41 blocked inhibitory functions of rAAS41, suggesting potential for design of vaccine antigens that provokes immunity to neutralize functions of this protein at the tick-feeding site. We discuss our findings with reference to tick-feeding physiology and discovery of effective tick vaccine antigens.


Assuntos
Amblyomma/química , Anti-Inflamatórios/farmacologia , Quimases/antagonistas & inibidores , Quimotripsina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Serpinas/farmacologia , Animais , Anti-Inflamatórios/química , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Expressão Gênica , Glicoproteínas/genética , Camundongos , Coelhos , Ratos , Proteínas Recombinantes , Saccharomycetales/genética , Serpinas/química , Serpinas/genética , Serpinas/isolamento & purificação
14.
PLoS Negl Trop Dis ; 14(2): e0007758, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049966

RESUMO

Amblyomma americanum ticks transmit more than a third of human tick-borne disease (TBD) agents in the United States. Tick saliva proteins are critical to success of ticks as vectors of TBD agents, and thus might serve as targets in tick antigen-based vaccines to prevent TBD infections. We describe a systems biology approach to identify, by LC-MS/MS, saliva proteins (tick = 1182, rabbit = 335) that A. americanum ticks likely inject into the host every 24 h during the first 8 days of feeding, and towards the end of feeding. Searching against entries in GenBank grouped tick and rabbit proteins into 27 and 25 functional categories. Aside from housekeeping-like proteins, majority of tick saliva proteins belong to the tick-specific (no homology to non-tick organisms: 32%), protease inhibitors (13%), proteases (8%), glycine-rich proteins (6%) and lipocalins (4%) categories. Global secretion dynamics analysis suggests that majority (74%) of proteins in this study are associated with regulating initial tick feeding functions and transmission of pathogens as they are secreted within 24-48 h of tick attachment. Comparative analysis of the A. americanum tick saliva proteome to five other tick saliva proteomes identified 284 conserved tick saliva proteins: we speculate that these regulate critical tick feeding functions and might serve as tick vaccine antigens. We discuss our findings in the context of understanding A. americanum tick feeding physiology as a means through which we can find effective targets for a vaccine against tick feeding.


Assuntos
Proteínas de Artrópodes/química , Ixodidae/fisiologia , Proteoma/química , Saliva/química , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Cromatografia Líquida , Comportamento Alimentar , Feminino , Ixodidae/química , Ixodidae/genética , Masculino , Proteoma/genética , Proteoma/metabolismo , Coelhos , Saliva/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Espectrometria de Massas em Tandem , Infestações por Carrapato/parasitologia
15.
PLoS Pathog ; 15(11): e1008128, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31756216

RESUMO

Feeding and transmission of tick-borne disease (TBD) agents by ticks are facilitated by tick saliva proteins (TSP). Thus, defining functional roles of TSPs in tick evasion is expected to reveal potential targets in tick-antigen based vaccines to prevent TBD infections. This study describes two types of Amblyomma americanum TSPs: those that are similar to LPS activate macrophage (MΦ) to express pro-inflammation (PI) markers and another set that suppresses PI marker expression by activated MΦ. We show that similar to LPS, three recombinant (r) A. americanum insulin-like growth factor binding-related proteins (rAamIGFBP-rP1, rAamIGFBP-rP6S, and rAamIGFBP-rP6L), hereafter designated as PI-rTSPs, stimulated both PBMC -derived MΦ and mice RAW 267.4 MΦ to express PI co-stimulatory markers, CD40, CD80, and CD86 and cytokines, TNFα, IL-1, and IL-6. In contrast, two A. americanum tick saliva serine protease inhibitors (serpins), AAS27 and AAS41, hereafter designated as anti-inflammatory (AI) rTSPs, on their own did not affect MΦ function or suppress expression of PI markers, but enhanced expression of AI cytokines (IL-10 and TGFß) in MΦ that were pre-activated by LPS or PI-rTSPs. Mice paw edema test demonstrated that in vitro validated PI- and AI-rTSPs are functional in vivo since injection of HEK293-expressed PI-rTSPs (individually or as a cocktail) induced edema comparable to carrageenan-induced edema and was characterized by upregulation of CD40, CD80, CD86, TNF-α, IL-1, IL-6, and chemokines: CXCL1, CCL2, CCL3, CCL5, and CCL11, whereas the AI-rTSPs (individually and cocktail) were suppressive. We propose that the tick may utilize countervailing PI and AI TSPs to regulate evasion of host immune defenses whereby TSPs such as rAamIGFBP-rPs activate host immune cells and proteins such as AAS27 and AAS41 suppress the activated immune cells.


Assuntos
Anti-Inflamatórios/metabolismo , Proteínas de Artrópodes/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/parasitologia , Saliva/metabolismo , Infestações por Carrapato/parasitologia , Carrapatos/patogenicidade , Animais , Proteínas de Artrópodes/genética , Feminino , Células HEK293 , Interações Hospedeiro-Parasita , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infestações por Carrapato/imunologia , Infestações por Carrapato/metabolismo
16.
PLoS Negl Trop Dis ; 13(8): e0007660, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31449524

RESUMO

Ticks successfully feed and transmit pathogens by injecting pharmacological compounds in saliva to thwart host defenses. We have previously used LC-MS/MS to identify proteins that are present in saliva of unfed Amblyomma americanum ticks that were exposed to different hosts. Here we show that A. americanum serine protease inhibitor (serpin) 27 (AAS27) is an immunogenic saliva protein that is injected into the host within the first day of tick feeding and is an anti-inflammatory protein that might act by blocking plasmin and trypsin functions. Although AAS27 is injected into the host throughout tick feeding, qRT-PCR and western blotting analyses indicate that the respective transcript and protein are present in high amounts within the first 24 h of tick feeding. Biochemical screening of Pichia pastoris-expressed recombinant (r) AAS27 against mammalian proteases related to host defense shows it is an inhibitor of trypsin and plasmin, with stoichiometry of inhibition indices of 3.5 and 3.8, respectively. Consistent with typical inhibitory serpins, rAAS27 formed heat- and SDS-stable irreversible complexes with both proteases. We further demonstrate that rAAS27 inhibits trypsin with ka of 6.46 ± 1.24 x 104 M-1 s-1, comparable to serpins of other tick species. We show that native AAS27 is part of the repertoire of proteins responsible for the inhibitory activity against trypsin in crude tick saliva. AAS27 is likely utilized by the tick to evade the hosts inflammation defense since rAAS27 blocks both formalin and compound 48/80-induced inflammation in rats. Tick immune sera of rabbits that had acquired resistance against tick feeding following repeated infestations with A. americanum or Ixodes scapularis ticks reacts with rAAS27. Of significant interest, antibody to rAAS27 blocks this serpin inhibitory functions. Taken together, we conclude that AAS27 is an anti-inflammatory protein secreted into the host during feeding and may represent a potential candidate for development of an anti-tick vaccine.


Assuntos
Anti-Inflamatórios/metabolismo , Proteínas de Artrópodes/metabolismo , Evasão da Resposta Imune , Ixodidae/patogenicidade , Serpinas/metabolismo , Animais , Antifibrinolíticos/metabolismo , Transporte Proteico , Coelhos , Ratos , Inibidores da Tripsina/metabolismo
17.
Sci Rep ; 8(1): 4698, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549327

RESUMO

Ticks are arthropod ectoparasites of importance for public and veterinary health. The understanding of tick oogenesis and embryogenesis could contribute to the development of novel control methods. However, to date, studies on the temporal dynamics of proteins during ovary development were not reported. In the present study we followed protein profile during ovary maturation. Proteomic analysis of ovary extracts was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using shotgun strategy, in addition to dimethyl labelling-based protein quantification. A total of 3,756 proteins were identified, which were functionally annotated into 30 categories. Circa 80% of the annotated proteins belong to categories related to basal metabolism, such as protein synthesis and modification machineries, nuclear regulation, cytoskeleton, proteasome machinery, transcriptional machinery, energetic metabolism, extracellular matrix/cell adhesion, immunity, oxidation/detoxification metabolism, signal transduction, and storage. The abundance of selected proteins involved in yolk uptake and degradation, as well as vitellin accumulation during ovary maturation, was assessed using dimethyl-labelling quantification. In conclusion, proteins identified in this study provide a framework for future studies to elucidate tick development and validate candidate targets for novel control methods.


Assuntos
Proteínas de Artrópodes/metabolismo , Ovário/crescimento & desenvolvimento , Proteoma/análise , Carrapatos/crescimento & desenvolvimento , Vitelogênese , Animais , Feminino , Ovário/metabolismo , Proteoma/metabolismo , Carrapatos/metabolismo
18.
Ticks Tick Borne Dis ; 9(3): 506-518, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396196

RESUMO

Serine protease inhibitors (serpins) are thought to mediate the tick's evasion of the host's serine protease-mediated defense pathways such as inflammation and blood clotting. This study describes characterization and target validation of 11 blood meal-responsive serpins that are associated with nymph and adult Ixodes scapularis tick feeding as revealed by quantitative (q)RT-PCR and RNAi silencing analyses. Given the high number of targets, we used combinatorial (co) RNAi silencing to disrupt candidate serpins in two groups (G): seven highly identical and four non-identical serpins based on amino acid identities, here after called GI and GII respectively. We show that injection of both GI and GII co-dsRNA into unfed nymph and adult I. scapularis ticks triggered suppression of cognate serpin mRNA. We show that disruption of GII, but not GI serpins significantly reduced feeding efficiency of both nymph and adult I. scapularis ticks. Knockdown of GII serpin transcripts caused significant respective mortalities of ≤40 and 71% of nymphal and adult ticks that occurred within 24-48 h of attachment. This is significant, as the observed lethality preceded the tick feeding period when transmission of tick borne pathogens is predominant. We suspect that some of the GII serpins (S9, S17, S19 and S32) play roles in the tick detachment process in that upon detachment, mouthparts of GII co-dsRNA injected were covered with a whitish gel-like tissue that could be the tick cement cone. Normally, ticks do not retain tissue on their mouthparts upon detachment. Furthermore, disruption of GII serpins reduced tick blood meal sizes and the adult tick's ability to convert the blood meal to eggs. We discuss our data with reference to tick feeding physiology and conclude that some of the GII serpins are potential targets for anti-tick vaccine development.


Assuntos
Sangue , Comportamento Alimentar/fisiologia , Ixodes/genética , Ixodes/fisiologia , Serpinas/genética , Animais , Proteínas de Artrópodes/genética , Técnicas de Silenciamento de Genes , Ninfa/fisiologia , Interferência de RNA , RNA Mensageiro , Análise de Sequência de DNA , Serpinas/metabolismo
19.
Int J Parasitol ; 48(3-4): 211-224, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29258831

RESUMO

The adaptation of hard ticks to feed for long periods is facilitated by the cement cone, which securely anchors the tick mouthparts onto host skin and protects the tick from being groomed off by the host. Thus, preventing tick cement deposition is an attractive target for the development of innovative tick control. We used LC-MS/MS sequencing to identify 160 Amblyomma americanum tick cement proteins that include glycine-rich proteins (GRP, 19%), protease inhibitors (12%), proteins of unknown function (11%), mucin (4%), detoxification, storage, and lipocalin at 1% each, and housekeeping proteins (50%). Spatiotemporal transcription analysis showing mRNA expression in multiple tick organs and transcript abundance increasing with feeding suggest that selected GRPs (n = 13) regulate multiple tick feeding functions, being classified as constitutively expressed (CE), feeding induced (FI), and up-regulated with feeding (UR). We show that transcription of CE GRPs is likely under the control of tick appetence associated factors in that mRNA abundance increased several thousand fold in 1 week old adult ticks, the time period that coincides with tick attainment of appetence. Given the high number of targets, we synthesized and injected unfed ticks with combinatorial (co) double stranded (ds)RNA and disrupted GRP mRNA in clusters according to similar transcription patterns: CE (n = 3), FI, (n = 4), and UR (n = 6) to streamline the work. Our data suggest that CE and FI GRPs are important for maintenance of the tick feeding site in that reddening and subsequent bleeding were observed around the mouthparts of CE and FI GRP co-dsRNA injected ticks during feeding. Furthermore, although not significantly different, indices for blood meal size and fecundity were apparently reduced in FI and UR ticks. We discuss our data with reference to A. americanum tick feeding physiology.


Assuntos
Proteínas de Artrópodes/análise , Ixodidae/química , Análise de Variância , Animais , Proteínas de Artrópodes/química , Galinhas , Cromatografia Líquida , Feminino , Ixodidae/genética , Ixodidae/fisiologia , Interferência de RNA , RNA de Cadeia Dupla/farmacologia , RNA Mensageiro/metabolismo , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem , Transcriptoma
20.
Exp Appl Acarol ; 72(4): 429-437, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28840367

RESUMO

Due to the recorded spreading of ticks in past years, a higher incidence of tick-borne diseases (TBDs) can be expected in the future in endemic areas, but can also pose an emerging public health concern in areas where they have not yet been recognized. Assessment of the exposure of vulnerable hosts to ticks would be a very helpful tool for TBD epidemiological studies, as well as for their proper managing. To confirm previous tick bites, the method of choice is detection of antibodies in host serum as markers developed against injected tick saliva proteins during feeding. We recently showed that the recombinant form of Ixodes ricinus AV422 saliva protein (rIrAV422) can serve for detection of markers in experimentally infested rats. Here we examine whether it can be used in the same manner in naturally exposed hosts. We chose hunting dogs as good sentinel animals. The study group consisted of 15 dogs that varied in breed, age, sex, previous tick infestation history and repellent treatment. Western blot analysis with rIrAV422 as an antigen confirmed the presence of tick bite markers in all analysed dogs. For some of the dogs, their previous tick infestation history was unclear, which emphasizes the usefulness of rIrAV422 for revealing it. Since hunting dogs are naturally infested with different ticks, the potential of rIrAV422 in assessment of general exposure to ticks is highlighted. Use of rIrAV422 can also be helpful in veterinary practice and research as a tool for validation of the efficiency of tick repellent products.


Assuntos
Proteínas de Artrópodes/análise , Doenças do Cão/diagnóstico , Ixodes/fisiologia , Proteínas e Peptídeos Salivares/análise , Picadas de Carrapatos/veterinária , Infestações por Carrapato/veterinária , Animais , Doenças do Cão/parasitologia , Cães , Feminino , Masculino , Proteínas Recombinantes/análise , Sérvia , Picadas de Carrapatos/diagnóstico , Picadas de Carrapatos/parasitologia , Infestações por Carrapato/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...