Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Foods ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611399

RESUMO

The valorization of agri-food products not only represents important economic and environmental benefits but can also be a source of potentially profitable, functional, and safe ingredients. This study aimed to valorize peach fruit and wine lees (WL) by producing functional juice. WL were incorporated at different concentrations (1.5 and 2%; w:w) in unpasteurized peach and grape juice and subsequently stored under refrigeration (5 °C). The antimicrobial activity of WL in peach and grape juices was assessed against Listeria monocytogenes and Saccharomyces cerevisiae as well as physicochemical, nutritional microbiological, and sensory acceptability. The maximum addition of WL to the juice (2%) showed a significant inhibitory effect against L. monocytogenes (4-log reduction) and increased the content of total soluble solids (TSS) (10%), total polyphenol content (TPC) (75%), and total antioxidant activity (AOX) (86%). During storage, AOX, TPC, TSS, pH, and titratable acidity (TA) remained stable. A significant correlation was observed between TPC and AOX. Total mesophilic aerobic bacteria and yeast counts increased during storage. Fifty-seven percent of tasters (n = 26) rated the functional juice positively. Thus, these agri-food products could be useful for producing functional juices with a longer shelf life, contributing to their valorization.

2.
Antioxidants (Basel) ; 13(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247491

RESUMO

In this study, we examined the metabolic and gut microbiome responses to paraquat (PQ) in male Wistar rats, focusing on oxidative stress effects. Rats received a single intraperitoneal injection of PQ at 15 and 30 mg/kg, and various oxidative stress parameters (i.e., MDA, SOD, ROS, 8-isoprostanes) were assessed after three days. To explore the omic profile, GC-qTOF and UHPLC-qTOF were performed to assess the plasma metabolome; 1H-NMR was used to assess the urine metabolome; and shotgun metagenomics sequencing was performed to study the gut microbiome. Our results revealed reductions in body weight and tissue changes, particularly in the liver, were observed, suggesting a systemic effect of PQ. Elevated lipid peroxidation and reactive oxygen species levels in the liver and plasma indicated the induction of oxidative stress. Metabolic profiling revealed changes in the tricarboxylic acid cycle, accumulation of ketone body, and altered levels of key metabolites, such as 3-hydroxybutyric acid and serine, suggesting intricate links between energy metabolism and redox reactions. Plasma metabolomic analysis revealed alterations in mitochondrial metabolism, nicotinamide metabolism, and tryptophan degradation. The gut microbiome showed shifts, with higher PQ doses influencing microbial populations (e.g., Escherichia coli and Akkermansia muciniphila) and metagenomic functions (pyruvate metabolism, fermentation, nucleotide and amino acid biosynthesis). Overall, this study provides comprehensive insights into the complex interplay between PQ exposure, metabolic responses, and gut microbiome dynamics. These findings enhance our understanding of the mechanisms behind oxidative stress-induced metabolic alterations and underscore the connections between xenobiotic exposure, gut microbiota, and host metabolism.

3.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069379

RESUMO

Disruptions of the light/dark cycle and unhealthy diets can promote misalignment of biological rhythms and metabolic alterations, ultimately leading to an oxidative stress condition. Grape seed proanthocyanidin extract (GSPE), which possesses antioxidant properties, has demonstrated its beneficial effects in metabolic-associated diseases and its potential role in modulating circadian disruptions. Therefore, this study aimed to assess the impact of GSPE administration on the liver oxidant system of healthy and diet-induced obese rats undergoing a sudden photoperiod shift. To this end, forty-eight photoperiod-sensitive Fischer 344/IcoCrl rats were fed either a standard (STD) or a cafeteria diet (CAF) for 6 weeks. A week before euthanizing, rats were abruptly transferred from a standard photoperiod of 12 h of light/day (L12) to either a short (6 h light/day, L6) or a long photoperiod (18 h light/day, L18) while receiving a daily oral dose of vehicle (VH) or GSPE (25 mg/kg). Alterations in body weight gain, serum and liver biochemical parameters, antioxidant gene and protein expression, and antioxidant metabolites were observed. Interestingly, GSPE partially ameliorated these effects by reducing the oxidative stress status in L6 through an increase in GPx1 expression and in hepatic antioxidant metabolites and in L18 by increasing the NRF2/KEAP1/ARE pathway, thereby showing potential in the treatment of circadian-related disorders by increasing the hepatic antioxidant response in a photoperiod-dependent manner.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Ratos , Animais , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fotoperíodo , Ratos Wistar , Fator 2 Relacionado a NF-E2/metabolismo , Extrato de Sementes de Uva/farmacologia , Extrato de Sementes de Uva/uso terapêutico , Proantocianidinas/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Fígado/metabolismo
4.
Sci Rep ; 13(1): 22646, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114521

RESUMO

Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in LPL activity might result in an identifiable metabolomic signature. The aim of the present study was to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, which led to a predictive model developed using machine learning techniques. The predictive model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. The application of predictive metabolomic models based on mechanistic preclinical research may be considered as a strategy to stratify subjects with HTG of different origins. This approach may be of interest for precision medicine and nutritional approaches.


Assuntos
Hipertrigliceridemia , Lipase Lipoproteica , Animais , Humanos , Masculino , Ratos , Ésteres do Colesterol/metabolismo , Lipase Lipoproteica/metabolismo , Ratos Wistar , Triglicerídeos
5.
Antioxidants (Basel) ; 12(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37627601

RESUMO

Polyphenols play a key role in the modulation of circadian rhythms, while the cafeteria diet (CAF) is able to perturb the hepatic biological rhythm and induce important ROS production. Consequently, we aimed to elucidate whether grape seed proanthocyanidin extract (GSPE) administration recovers the CAF-induced hepatic antioxidant (AOX) misalignment and characterize the chronotherapeutic properties of GSPE. For this purpose, Fischer 344 rats were fed a standard diet (STD) or a CAF and concomitantly treated with GSPE at two time-points (ZT0 vs. ZT12). Animals were euthanized every 6 h and the diurnal rhythms of hepatic ROS-related biomarkers, hepatic metabolites, and AOX gene expression were examined. Interestingly, GSPE treatment was able to recover the diurnal rhythm lost due to the CAF. Moreover, GSPE treatment also increased the acrophase of Sod1, as well as bringing the peak closer to that of the STD group. GSPE also corrected some hepatic metabolites altered by the CAF. Importantly, the differences observed at ZT0 vs. ZT12 due to the time of GSPE administration highlight a chronotherapeutic profile on the proanthocyanin effect. Finally, GSPE could also reduce diet-induced hepatic oxidative stress not only by its ROS-scavenging properties but also by retraining the circadian rhythm of AOX enzymes.

6.
Food Funct ; 14(14): 6443-6454, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37377055

RESUMO

Changes in light/dark cycles and obesogenic diets are related to the disruption of circadian rhythms and metabolic disorders. Grape seed flavanols have shown beneficial effects on metabolic diseases and, recently, a circadian system modulation has been suggested to mediate their health-enhancing properties. Therefore, the aim of this study was to evaluate the grape seed (poly)phenol extract (GSPE) effects in healthy and obese rats after a light/dark cycle disruption. Forty-eight rats were fed a standard (STD) or cafeteria (CAF) diet for 6 weeks under STD conditions of a light/dark cycle (12 h light per day, L12). Then, animals were switched to a long (18 h light per day, L18) or short (6 h light per day, L6) photoperiod and administered a vehicle (VH) or GSPE (25 mg kg-1) for 1 week. The results showed changes in serum lipids and insulin and metabolomic profiles dependent on the photoperiod and animal health status. GSPE administration improved serum parameters and increased the Nampt gene expression in CAF rats and modified the metabolomic profile in a photoperiod-dependent manner. Metabolic effects of light/dark disturbance depend on the health status of the rats, with diet-induced CAF-induced obese rats being more affected. Grape seed flavanols improve the metabolic status in a photoperiod-dependent manner and their effects on the circadian system suggest that part of their metabolic effects could be mediated by their action on biological rhythms.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Vitis , Animais , Ratos , Dieta , Extrato de Sementes de Uva/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proantocianidinas/farmacologia
7.
Mol Nutr Food Res ; 67(9): e2200600, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829267

RESUMO

SCOPE: Polyphenols health effects on obesity are mainly attributed to their metabolites generated after their gastrointestinal digestion, in which gut microbiota plays an important role. Moreover, gut microbiota composition and polyphenols bioavailability are influenced by differences in day light length (photoperiod). Thus, this study evaluates if a grape seed proanthocyanidins (GSPEs) extract bioavailability is influenced by different photoperiod exposure via gut microbiota modulation in an obesogenic context. METHODS AND RESULTS: Cafeteria diet-induced obese Fischer 344 rats are housed under different photoperiod conditions (6, 12, or 18 h of light per day) during 9 weeks and administered with GSPE (25 mg kg-1 ) or GSPE and an antibiotic cocktail (ABX) for the last 4 weeks. Serum GSPE-derived metabolites are quantified by HPLC-MS/MS. CONCLUSION: A higher bioavailability is observed under 6 h light/18 h darkness (L6) compared to 18 h light/6 h darkness (L18). Individual metabolites, especially those from the gut microbiota, are affected by photoperiods. ABX treatment alters these photoperiod-mediated changes. Therefore, these results suggest that gut microbiota plays a key role in the photoperiod effects on GSPE bioavailability in obese rats.


Assuntos
Microbioma Gastrointestinal , Extrato de Sementes de Uva , Proantocianidinas , Ratos , Animais , Proantocianidinas/farmacologia , Fotoperíodo , Disponibilidade Biológica , Espectrometria de Massas em Tandem , Obesidade/etiologia , Obesidade/metabolismo , Extrato de Sementes de Uva/farmacologia , Dieta , Polifenóis/farmacologia , Ratos Endogâmicos F344
8.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674520

RESUMO

Energy homeostasis and metabolism in mammals are strongly influenced by seasonal changes. Variations in photoperiod patterns drive adaptations in body weight and adiposity, reflecting changes in the regulation of food intake and energy expenditure. Humans also show distinct patterns of energy balance depending on the season, being more susceptible to gaining weight during a specific time of the year. Changes in body weight are mainly reflected by the adipose tissue, which is a key metabolic tissue and is highly affected by circannual rhythms. Mostly, in summer-like (long-active) photoperiod, adipocytes adopt a rather anabolic profile, more predisposed to store energy, while food intake increases and energy expenditure is reduced. These metabolic adaptations involve molecular modifications, some of which have been studied during the last years and are summarized in this review. In addition, there is a bidirectional relation between obesity and the seasonal responses, with obesity disrupting some of the seasonal responses observed in healthy mammals, and altered seasonality being highly associated with increased risk of developing obesity. This suggests that changes in photoperiod produce important metabolic alterations in healthy organisms. Biological rhythms impact the regulation of metabolism to different extents, some of which are already known, but further research is needed to fully understand the relationship between energy balance and seasonality.


Assuntos
Adiposidade , Fotoperíodo , Animais , Humanos , Obesidade/metabolismo , Peso Corporal/fisiologia , Mamíferos/fisiologia , Metabolismo Energético/fisiologia , Estações do Ano
9.
Plants (Basel) ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36616310

RESUMO

A plant's stress response involves the production of phytochemicals, including phenolic compounds. Their synthesis can be modulated by organic (ORG) or non-organic (NORG) farming systems in which they are grown. To examine this issue, thirteen plant-based foods cultivated in ORG and NORG systems were compared in terms of antioxidant capacity, total content of phenolics, anthocyanins, flavan-3-ols and flavonols. The results showed that NORG fruits tended to have higher phenolic compounds content, whereas ORG fruits had more antioxidant capacity. NORG legume stood out for having higher values from all the parameters analyzed in comparison to its ORG equivalent. ORG nuts showed more flavan-3-ols and flavonols than their NORG counterparts, nonetheless, tended to be less antioxidant. ORG vegetables displayed higher phenolics and anthocyanins, which reflected in higher antioxidant capacity than NORG ones. These findings suggest that farming systems differentially modulate phenolic compound composition and antioxidant capacity based on the plant species studied.

10.
Biomolecules ; 12(6)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35740964

RESUMO

Seasonality is gaining attention in the modulation of some physiological and metabolic functions in mammals. Furthermore, the consumption of natural compounds, such as GSPE, is steadily increasing. Consequently, in order to study the interaction of seasonal variations in day length over natural compounds' molecular effects, we carried out an animal study using photo-sensitive rats which were chronically exposed for 9 weeks to three photoperiods (L6, L18, and L12) in order to mimic the day length of different seasons (winter/summer/and autumn-spring). In parallel, animals were also treated either with GSPE 25 (mg/kg) or vehicle (VH) for 4 weeks. Interestingly, a seasonal-dependent GSPE modulation on the hepatic glucose and lipid metabolism was observed. For example, some metabolic genes from the liver (SREBP-1c, Gk, Acacα) changed their expression due to seasonality. Furthermore, the metabolomic results also indicated a seasonal influence on the GSPE effects associated with glucose-6-phosphate, D-glucose, and D-ribose, among others. These differential effects, which were also reflected in some plasmatic parameters (i.e., glucose and triglycerides) and hormones (corticosterone and melatonin), were also associated with significant changes in the expression of several hepatic circadian clock genes (Bmal1, Cry1, and Nr1d1) and ER stress genes (Atf6, Grp78, and Chop). Our results point out the importance of circannual rhythms in regulating metabolic homeostasis and suggest that seasonal variations (long or short photoperiods) affect hepatic metabolism in rats. Furthermore, they suggest that procyanidin consumption could be useful for the modulation of the photoperiod-dependent changes on glucose and lipid metabolism, whose alterations could be related to metabolic diseases (e.g., diabetes, obesity, and cardiovascular disease). Furthermore, even though the GSPE effect is not restricted to a specific photoperiod, our results suggest a more significant effect in the L18 condition.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Vitis , Animais , Glucose/metabolismo , Extrato de Sementes de Uva/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Mamíferos/metabolismo , Proantocianidinas/farmacologia , Ratos , Ratos Endogâmicos F344 , Estações do Ano , Vitis/metabolismo
11.
Nutrients ; 14(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684049

RESUMO

Consumption of grape seed proanthocyanidin extract (GSPE) has beneficial effects on the functionality of white adipose tissue (WAT). However, although WAT metabolism shows a clear diurnal rhythm, whether GSPE consumption could affect WAT rhythmicity in a time-dependent manner has not been studied. Ninety-six male Fischer rats were fed standard (STD, two groups) or cafeteria (CAF, four groups) diet for 9 weeks (n = 16 each group). From week 6 on, CAF diet animals were supplemented with vehicle or 25 mg GSPE/kg of body weight either at the beginning of the light/rest phase (ZT0) or at the beginning of the dark/active phase (ZT12). The two STD groups were also supplemented with vehicle at ZT0 or ZT12. In week 9, animals were sacrificed at 6 h intervals (n = 4) to analyze the diurnal rhythms of subcutaneous WAT metabolites by nuclear magnetic resonance spectrometry. A total of 45 metabolites were detected, 19 of which presented diurnal rhythms in the STD groups. Although most metabolites became arrhythmic under CAF diet, GSPE consumption at ZT12, but not at ZT0, restored the rhythmicity of 12 metabolites including compounds involved in alanine, aspartate, and glutamate metabolism. These results demonstrate that timed GSPE supplementation may restore, at least partially, the functional dynamics of WAT when it is consumed at the beginning of the active phase. This study opens an innovative strategy for time-dependent polyphenol treatment in obesity and metabolic diseases.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Infecções Sexualmente Transmissíveis , Tecido Adiposo Branco , Animais , Ritmo Circadiano , Extrato de Sementes de Uva/farmacologia , Masculino , Proantocianidinas/farmacologia , Ratos , Ratos Wistar
12.
Int J Obes (Lond) ; 46(7): 1394-1402, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35523954

RESUMO

BACKGROUND: Grape-seed proanthocyanidin extract (GSPE) improve white adipose tissue (WAT) expansion during diet-induced obesity. However, because adipose metabolism is synchronized by circadian rhythms, it is plausible to speculate that the bioactivity of dietary proanthocyanidins could be influenced by the time-of-day in which they are consumed. Therefore, the aim of the present study was to determine the interaction between zeitgeber time (ZT) and GSPE consumption on the functionality of WAT in rats with diet-induced obesity. METHODS: Male Wistar rats were fed a cafeteria diet for 9 weeks. After 5 weeks, the animals were supplemented with 25 mg GSPE/kg for 4 weeks at the beginning of the light/rest phase (ZT0) or of the dark/active phase (ZT12). Body fat content was determined by nuclear magnetic resonance and histological analyses were performed in the epididymal (EWAT) and inguinal (IWAT) fat depots to determine adipocyte size and number. In addition, the expression of genes related to adipose metabolism and circadian clock function were analyzed by qPCR. RESULTS: GSPE consumption at ZT0 was associated with a potential antidiabetic effect without affecting adiposity and energy intake and downregulating the gene expression of inflammatory markers in EWAT. In contrast, GSPE consumption at ZT12 improved adipose tissue expansion decreasing adipocyte size in IWAT. In accordance with this adipogenic activity, the expression of genes involved in fatty acid metabolism were downregulated at ZT12 in IWAT. In turn, GSPE consumption at ZT12, but not at ZT0, repressed the expression of the clock gene Cry1 in IWAT. CONCLUSIONS: The interaction between ZT and GSPE consumption influenced the metabolic response of WAT in a tissue-specific manner. Understanding the impact of circadian clock on adipose metabolism and how this is regulated by polyphenols will provide new insights for the management of obesity.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta , Extrato de Sementes de Uva/farmacologia , Masculino , Obesidade/metabolismo , Proantocianidinas/farmacologia , Ratos , Ratos Wistar
13.
Mol Nutr Food Res ; 66(21): e2100990, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35279936

RESUMO

Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.


Assuntos
Doenças Cardiovasculares , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiologia , Doenças Cardiovasculares/prevenção & controle , Fenóis/farmacologia , Inflamação
14.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269702

RESUMO

Chronic inflammation is an important risk factor in a broad variety of physical and mental disorders leading to highly prevalent non-communicable diseases (NCDs). However, there is a need for a deeper understanding of this condition and its progression to the disease state. For this reason, it is important to define metabolic pathways and complementary biomarkers associated with homeostatic disruption in chronic inflammation. To achieve that, male Wistar rats were subjected to intraperitoneal and intermittent injections with saline solution or increasing lipopolysaccharide (LPS) concentrations (0.5, 5 and 7.5 mg/kg) thrice a week for 31 days. Biochemical and inflammatory parameters were measured at the end of the study. To assess the omics profile, GC-qTOF and UHPLC-qTOF were performed to evaluate plasma metabolome; 1H-NMR was used to evaluate urine metabolome; additionally, shotgun metagenomics sequencing was carried out to characterize the cecum microbiome. The chronicity of inflammation in the study was evaluated by the monitoring of monocyte chemoattractant protein-1 (MCP-1) during the different weeks of the experimental process. At the end of the study, together with the increased levels of MCP-1, levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2) along with 8-isoprostanes (an indicative of oxidative stress) were significantly increased (p-value < 0.05). The leading features implicated in the current model were tricarboxylic acid (TCA) cycle intermediates (i.e., alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid); lipids such as specific cholesterol esters (ChoEs), lysophospholipids (LPCs) and phosphatidylcholines (PCs); and glycine, as well as N, N-dimethylglycine, which are related to one-carbon (1C) metabolism. These metabolites point towards mitochondrial metabolism through TCA cycle, ß-oxidation of fatty acids and 1C metabolism as interconnected pathways that could reveal the metabolic effects of chronic inflammation induced by LPS administration. These results provide deeper knowledge concerning the impact of chronic inflammation on the disruption of metabolic homeostasis.


Assuntos
Ácidos Graxos , Lipopolissacarídeos , Animais , Carbono , Homeostase , Humanos , Inflamação , Lipopolissacarídeos/toxicidade , Masculino , Metaboloma , Ratos , Ratos Wistar
15.
Nutrients ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35215423

RESUMO

Major susceptibility to alterations in liver function (e.g., hepatic steatosis) in a prone environment due to circadian misalignments represents a common consequence of recent sociobiological behavior (i.e., food excess and sleep deprivation). Natural compounds and, more concisely, polyphenols have been shown as an interesting tool for fighting against metabolic syndrome and related consequences. Furthermore, mitochondria have been identified as an important target for mediation of the health effects of these compounds. Additionally, mitochondrial function and dynamics are strongly regulated in a circadian way. Thus, we wondered whether some of the beneficial effects of grape-seed procyanidin extract (GSPE) on metabolic syndrome could be mediated by a circadian modulation of mitochondrial homeostasis. For this purpose, rats were subjected to "standard", "cafeteria" and "cafeteria diet + GSPE" treatments (n = 4/group) for 9 weeks (the last 4 weeks, GSPE/vehicle) of treatment, administering the extract/vehicle at diurnal or nocturnal times (ZT0 or ZT12). For circadian assessment, one hour after turning the light on (ZT1), animals were sacrificed every 6 h (ZT1, ZT7, ZT13 and ZT19). Interestingly, GSPE was able to restore the rhythm on clock hepatic genes (Bmal1, Per2, Cry1, Rorα), as this correction was more evident in nocturnal treatment. Additionally, during nocturnal treatment, an increase in hepatic fusion genes and a decrease in fission genes were observed. Regarding mitochondrial complex activity, there was a strong effect of cafeteria diet at nearly all ZTs, and GSPE was able to restore activity at discrete ZTs, mainly in the diurnal treatment (ZT0). Furthermore, a differential behavior was observed in tricarboxylic acid (TCA) metabolites between GSPE diurnal and nocturnal administration times. Therefore, GSPE may serve as a nutritional preventive strategy in the recovery of hepatic-related metabolic disease by modulating mitochondrial dynamics, which is concomitant to the restoration of the hepatic circadian machinery.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Vitis , Animais , Dieta , Extrato de Sementes de Uva/farmacologia , Fígado/metabolismo , Dinâmica Mitocondrial , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Ratos , Ratos Wistar
16.
Food Chem ; 366: 130690, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343949

RESUMO

Enzymatic-assisted extraction using Flavourzyme® has been demonstrated to be a useful methodology to obtain wine lees (WL) enriched in phenolic compounds and with enhanced antihypertensive activity. Nevertheless, taking into account that Flavourzyme® possess proteolytic activity, the release of bioactive peptides should not be ruled out. In this study, we investigate the presence of antihypertensive peptides in the WL hydrolysate. Peptides were separated into fractions by ultrafiltration and RP-HPLC. Next, peptide identification by nano-HPLC-(Orbitrap)MS/MS was performed in the fractions showing the highest angiotensin-converting enzyme inhibitory (ACEi) activities. Six peptides were identified; three of them showing ACEi (IC50) values lower than 20 µM. The peptide antihypertensive effect was evaluated in spontaneously hypertensive rats at an oral dose of 10 mg/kg bw. Peptides FKTTDQQTRTTVA, NPKLVTIV, TVTNPARIA, LDSPSEGRAPG and LDSPSEGRAPGAD exhibited antihypertensive activity, confirming that they could contribute to the blood pressure-lowering effect of the WL hydrolysate. These peptides have a great potential as functional ingredients to manage hypertension.


Assuntos
Hipertensão , Vinho , Inibidores da Enzima Conversora de Angiotensina , Animais , Anti-Hipertensivos , Hipertensão/tratamento farmacológico , Peptídeos , Hidrolisados de Proteína , Ratos , Espectrometria de Massas em Tandem
17.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884735

RESUMO

Stress disorders have dramatically increased in recent decades becoming the most prevalent psychiatric disorder in the United States and Europe. However, the diagnosis of stress disorders is currently based on symptom checklist and psychological questionnaires, thus making the identification of candidate biomarkers necessary to gain better insights into this pathology and its related metabolic alterations. Regarding the identification of potential biomarkers, omic profiling and metabolic footprint arise as promising approaches to recognize early biochemical changes in such disease and provide opportunities for the development of integrative candidate biomarkers. Here, we studied plasma and urine metabolites together with metagenomics in a 3 days Chronic Unpredictable Mild Stress (3d CUMS) animal approach that aims to focus on the early stress period of a well-established depression model. The multi-omics integration showed a profile composed by a signature of eight plasma metabolites, six urine metabolites and five microbes. Specifically, threonic acid, malic acid, alpha-ketoglutarate, succinic acid and cholesterol were proposed as key metabolites that could serve as key potential biomarkers in plasma metabolome of early stages of stress. Such findings targeted the threonic acid metabolism and the tricarboxylic acid (TCA) cycle as important pathways in early stress. Additionally, an increase in opportunistic microbes as virus of the Herpesvirales was observed in the microbiota as an effect of the primary stress stages. Our results provide an experimental biochemical characterization of the early stage of CUMS accompanied by a subsequent omic profiling and a metabolic footprinting that provide potential candidate biomarkers.


Assuntos
Metaboloma , Microbiota , Estresse Psicológico/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/urina , Masculino , Ratos Wistar , Estresse Psicológico/microbiologia
18.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361703

RESUMO

Matrix metalloproteinases (MMPs) are the family of proteases that are mainly responsible for degrading extracellular matrix (ECM) components. In the skin, the overexpression of MMPs as a result of ultraviolet radiation triggers an imbalance in the ECM turnover in a process called photoaging, which ultimately results in skin wrinkling and premature skin ageing. Therefore, the inhibition of different enzymes of the MMP family at a topical level could have positive implications for photoaging. Considering that the MMP catalytic region is mostly conserved across different enzymes of the MMP family, in this study we aimed to design a virtual screening (VS) workflow to identify broad-spectrum MMP inhibitors that can be used to delay the development of photoaging. Our in silico approach was validated in vitro with 20 VS hits from the Specs library that were not only structurally different from one another but also from known MMP inhibitors. In this bioactivity assay, 18 of the 20 compounds inhibit at least one of the assayed MMPs at 100 µM (with 5 of them showing around 50% inhibition in all the tested MMPs at this concentration). Finally, this VS was used to identify natural products that have the potential to act as broad-spectrum MMP inhibitors and be used as a treatment for photoaging.


Assuntos
Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/química , Pele/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Produtos Biológicos/química , Domínio Catalítico , Ensaios Enzimáticos , Ensaios de Triagem em Larga Escala , Humanos , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Sensibilidade e Especificidade , Pele/enzimologia , Pele/patologia , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Bibliotecas de Moléculas Pequenas/química , Eletricidade Estática , Relação Estrutura-Atividade , Raios Ultravioleta/efeitos adversos , Interface Usuário-Computador
19.
Pharmaceutics ; 13(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071571

RESUMO

In response to foreign or endogenous stimuli, both microglia and astrocytes adopt an activated phenotype that promotes the release of pro-inflammatory mediators. This inflammatory mechanism, known as neuroinflammation, is essential in the defense against foreign invasion and in normal tissue repair; nevertheless, when constantly activated, this process can become detrimental through the release of neurotoxic factors that amplify underlying disease. In consequence, this study presents the anti-inflammatory and immunomodulatory properties of o-orsellinaldehyde, a natural compound found by an in silico approach in the Grifola frondosa mushroom, in astrocytes and microglia cells. For this purpose, primary microglia and astrocytes were isolated from mice brain and cultured in vitro. Subsequently, cells were exposed to LPS in the absence or presence of increasing concentrations of this natural compound. Specifically, the results shown that o-orsellinaldehyde strongly inhibits the LPS-induced inflammatory response in astrocytes and microglia by decreasing nitrite formation and downregulating iNOS and HO-1 expression. Furthermore, in microglia cells o-orsellinaldehyde inhibits NF-κB activation; and potently counteracts LPS-mediated p38 kinase and JNK phosphorylation (MAPK). In this regard, o-orsellinaldehyde treatment also induces a significant cell immunomodulation by repolarizing microglia toward the M2 anti-inflammatory phenotype. Altogether, these results could partially explain the reported beneficial effects of G. frondosa extracts on inflammatory conditions.

20.
Food Funct ; 12(16): 7358-7378, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34180938

RESUMO

Gastrointestinal digestion (GID) is a physiological process that transforms the stability, bioaccessibility and antioxidant activity (AOX) of polyphenols from blackberries (Rubus spp.). This study aimed to investigate the effect of the INFOGEST® GID protocol on the phenolic stability, bioaccessibility and AOX of Mexican wild (WB) and commercial (CB) blackberries. After GID, the total phenolic and anthocyanin contents in blackberries decreased by ≥68% and ≥74%, respectively. More than 40 phenolics were identified during GID; most of them degraded completely during digestion. GID had a negative effect on the AOX of both fruits (>50%), but WB showed the highest antioxidant activities, as assessed by the ORAC, DPPH, reducing power and ß-carotene bleaching methods. In Caco-2 cells, the cell-based antioxidant activity of digested blackberries (p < 0.05) decreased by 48% in WB and by 56% in CB. The capacity to inhibit intracellular ROS decreased by 50% in WB and by up to 86% in CB, after digestion. GID is a complex process that impacts on the bioactive properties of food nutrients, especially phenolics. In vitro and cellular AOX of WB polyphenols withstood the gastrointestinal environment better than CB phenolics. The in vitro assays results suggest that phenolics from underutilized WB have a higher bioaccessibility and antioxidant capacity than the polyphenols from the most frequently consumed CB. However, whether this corresponds to a better bioaccessibility in humans remains to be determined in future work.


Assuntos
Antioxidantes/metabolismo , Digestão/fisiologia , Extratos Vegetais/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Rubus/química , Rubus/metabolismo , Antioxidantes/química , Disponibilidade Biológica , Células CACO-2 , Trato Gastrointestinal , Humanos , Técnicas In Vitro , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...