Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 338: 111897, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37852415

RESUMO

Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss. Potassium plays a significant role in stomatal regulation. KAT1 is an inward-rectifying potassium channel that contributes to stomatal opening. Using a yeast high-throughput screening of an Arabidopsis cDNA library, MEE31 was found to physically interact with KAT1. MEE31 was initially identified in a screen for mutants with delayed embryonic development. The gene encodes a conserved phosphomannose isomerase (PMI). We report here that MEE31 interacts with and increases KAT1 activity in yeast and this interaction was also confirmed in plants. In addition, MEE31 complements the function of the yeast homologue, whereas the truncated version recovered in the screening does not, thus uncoupling the enzymatic activity from KAT1 regulation. We show that MEE31 overexpression leads to increased stomatal opening in Arabidopsis transgenic lines. Our data suggest that MEE31 is a moonlighting protein involved in both GDP-D-mannose biosynthesis and KAT1 regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Manose-6-Fosfato Isomerase , Canais de Potássio Corretores do Fluxo de Internalização , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Manose/metabolismo , Proteínas de Plantas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Água/metabolismo , Manose-6-Fosfato Isomerase/metabolismo
3.
FASEB J ; 35(6): e21615, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33978245

RESUMO

Protein sorting at the trans-Golgi network (TGN) usually requires the assistance of cargo adaptors. However, it remains to be examined how the same complex can mediate both the export and retention of different proteins or how sorting complexes interact among themselves. In Saccharomyces cerevisiae, the exomer complex is involved in the polarized transport of some proteins from the TGN to the plasma membrane (PM). Intriguingly, exomer and its cargos also show a sort of functional relationship with TGN clathrin adaptors that is still unsolved. Here, using a wide range of techniques, including time-lapse and BIFC microscopy, we describe new molecular implications of the exomer complex in protein sorting and address its different layers of functional interaction with clathrin adaptor complexes. Exomer mutants show impaired amino acid uptake because it facilitates not only the polarized delivery of amino acid permeases to the PM but also participates in their endosomal traffic. We propose a model for exomer where it modulates the recruitment of TGN clathrin adaptors directly or indirectly through the Arf1 function. Moreover, we describe an in vivo competitive relationship between the exomer and AP-1 complexes for the model cargo Chs3. These results highlight a broad role for exomer in regulating protein sorting at the TGN that is complementary to its role as cargo adaptor and present a model to understand the complexity of TGN protein sorting.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Quitina Sintase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Rede trans-Golgi/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
4.
Plant Physiol ; 181(3): 1277-1294, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451552

RESUMO

Potassium (K+) is a key monovalent cation necessary for multiple aspects of cell growth and survival. In plants, this cation also plays a key role in the control of stomatal movement. KAT1 and its homolog KAT2 are the main inward rectifying channels present in guard cells, mediating K+ influx into these cells, resulting in stomatal opening. To gain further insight into the regulation of these channels, we performed a split-ubiquitin protein-protein interaction screen searching for KAT1 interactors in Arabidopsis (Arabidopsis thaliana). We characterized one of these candidates, BCL2-ASSOCIATED ATHANOGENE4 (BAG4), in detail using biochemical and genetic approaches to confirm this interaction and its effect on KAT1 activity. We show that BAG4 improves KAT1-mediated K+ transport in two heterologous systems and provide evidence that in plants, BAG4 interacts with KAT1 and favors the arrival of KAT1 at the plasma membrane. Importantly, lines lacking or overexpressing the BAG4 gene show altered KAT1 plasma membrane accumulation and alterations in stomatal movement. Our data allowed us to identify a KAT1 regulator and define a potential target for the plant BAG family. The identification of physiologically relevant regulators of K+ channels will aid in the design of approaches that may impact drought tolerance and pathogen susceptibility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estômatos de Plantas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Técnicas de Patch-Clamp , Estômatos de Plantas/fisiologia , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
5.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052176

RESUMO

Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Canais de Potássio/metabolismo , Saccharomyces cerevisiae/genética , Canais de Sódio/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Canais de Potássio/genética , Saccharomyces cerevisiae/metabolismo , Canais de Sódio/genética
6.
Sci Rep ; 8(1): 15538, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341377

RESUMO

miRNAs are fundamental endogenous regulators of gene expression in higher organisms. miRNAs modulate multiple biological processes in plants. Consequently, miRNA accumulation is strictly controlled through miRNA precursor accumulation and processing. Members of the miRNA319 family are ancient ribo-regulators that are essential for plant development and stress responses and exhibit an unusual biogenesis that is characterized by multiple processing of their precursors. The significance of the high conservation of these non-canonical biogenesis pathways remains unknown. Here, we analyze data obtained by massive sRNA sequencing and 5' - RACE to explore the accumulation and infer the processing of members of the miR319 family in melon plants exposed to adverse environmental conditions. Sequence data showed that miR319c was down regulated in response to low temperature. However, the level of its precursor was increased by cold, indicating that miR319c accumulation is not related to the stem loop levels. Furthermore, we found that a decrease in miR319c was inversely correlated with the stable accumulation of an alternative miRNA (#miR319c) derived from multiple processing of the miR319c precursor. Interestingly, the alternative accumulation of miR319c and #miR319c was associated with an additional and non-canonical partial cleavage of the miR319c precursor during its loop-to-base-processing. Analysis of the transcriptional activity showed that miR319c negatively regulated the accumulation of HY5 via TCP2 in melon plants exposed to cold, supporting its involvement in the low temperature signaling pathway associated with anthocyanin biosynthesis. Our results provide new insights regarding the versatility of plant miRNA processing and the mechanisms regulating them as well as the hypothetical mechanism for the response to cold-induced stress in melon, which is based on the alternative regulation of miRNA biogenesis.


Assuntos
Temperatura Baixa , Cucurbitaceae/genética , Cucurbitaceae/efeitos da radiação , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/biossíntese , Análise de Sequência de RNA
7.
Mol Biol Cell ; 28(25): 3672-3685, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021337

RESUMO

Exomer is an adaptor complex required for the direct transport of a selected number of cargoes from the trans-Golgi network (TGN) to the plasma membrane in Saccharomyces cerevisiae However, exomer mutants are highly sensitive to increased concentrations of alkali metal cations, a situation that remains unexplained by the lack of transport of any known cargoes. Here we identify several HAL genes that act as multicopy suppressors of this sensitivity and are connected to the reduced function of the sodium ATPase Ena1. Furthermore, we find that Ena1 is dependent on exomer function. Even though Ena1 can reach the plasma membrane independently of exomer, polarized delivery of Ena1 to the bud requires functional exomer. Moreover, exomer is required for full induction of Ena1 expression after cationic stress by facilitating the plasma membrane recruitment of the molecular machinery involved in Rim101 processing and activation of the RIM101 pathway in response to stress. Both the defective localization and the reduced levels of Ena1 contribute to the sensitivity of exomer mutants to alkali metal cations. Our work thus expands the spectrum of exomer-dependent proteins and provides a link to a more general role of exomer in TGN organization.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Cátions/metabolismo , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Lítio/metabolismo , Complexos Multiproteicos/metabolismo , Potássio/metabolismo , Transporte Proteico , Rubídio/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
8.
FEBS Lett ; 591(13): 1993-2002, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28486745

RESUMO

We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H+ -ATPase Pma1 (which drives nutrient and K+ uptake and regulates pH homeostasis). Raising the temperature to nonpermissive values in a TOR thermosensitive mutant decreases Pma1 activity. Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector. Mutation of either Sit4 or Tco89, a nonessential subunit of TORC1, decreases proton efflux, K+ uptake, intracellular pH, cell growth, and tolerance to weak organic acids. Tco89 does not affect Pma1 activity but activates K+ transport.


Assuntos
Membrana Celular/metabolismo , Homeostase , Complexos Multiproteicos/metabolismo , Potássio/metabolismo , Bombas de Próton/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transporte Biológico , Concentração de Íons de Hidrogênio , Espaço Intracelular/química , Alvo Mecanístico do Complexo 1 de Rapamicina , Mutação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Plant Pathol ; 15(9): 881-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24751128

RESUMO

Movement proteins (MPs) encoded by plant viruses interact with host proteins to facilitate or interfere with intra- and/or intercellular viral movement. Using yeast two-hybrid and bimolecular fluorescence complementation assays, we herein present in vivo evidence for the interaction between Alfalfa mosaic virus (AMV) MP and Arabidopsis Patellin 3 (atPATL3) and Patellin 6 (atPATL6), two proteins containing a Sec14 domain. Proteins with Sec14 domains are implicated in membrane trafficking, cytoskeleton dynamics, lipid metabolism and lipid-mediated regulatory functions. Interestingly, the overexpression of atPATL3 and/or atPATL6 interfered with the plasmodesmata targeting of AMV MP and correlated with reduced infection foci size. Consistently, the viral RNA levels increased in the single and double Arabidopsis knockout mutants for atPATL3 and atPATL6. Our results indicate that, in general, MP-PATL interactions interfere with the correct subcellular targeting of MP, thus rendering the intracellular transport of viral MP-containing complexes less efficient and diminishing cell-to-cell movement.


Assuntos
Vírus do Mosaico da Alfafa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Transporte/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Proteínas de Ligação a Ácido Graxo , Técnicas de Inativação de Genes , Movimento , Plasmodesmos/metabolismo , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
Plant J ; 76(5): 875-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118423

RESUMO

The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response.


Assuntos
Núcleo Celular/metabolismo , Flavinas/metabolismo , Hemoglobinas/metabolismo , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Lotus/metabolismo
11.
Curr Genet ; 59(4): 207-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23974285

RESUMO

The relative concentrations of ions and solutes inside cells are actively maintained by several classes of transport proteins, in many cases against their concentration gradient. These transport processes, which consume a large portion of cellular energy, must be constantly regulated. Many structurally distinct families of channels, carriers, and pumps have been characterized in considerable detail during the past decades and defects in the function of some of these proteins have been linked to a growing list of human diseases. The dynamic regulation of the transport proteins present at the cell surface is vital for both normal cellular function and for the successful adaptation to changing environments. The composition of proteins present at the cell surface is controlled on both the transcriptional and post-translational level. Post-translational regulation involves highly conserved mechanisms of phosphorylation- and ubiquitylation-dependent signal transduction routes used to modify the cohort of receptors and transport proteins present under any given circumstances. In this review, we will summarize what is currently known about one facet of this regulatory process: the endocytic regulation of alkali metal transport proteins. The physiological relevance, major contributors, parallels and missing pieces of the puzzle in mammals, yeast and plants will be discussed.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Endocitose/fisiologia , Mamíferos/metabolismo , Metais Alcalinos/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Leveduras/metabolismo , Animais , Modelos Biológicos , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Especificidade da Espécie , Ubiquitinação
12.
Eukaryot Cell ; 9(12): 1881-90, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20952580

RESUMO

The yeast protein kinases Sat4/Hal4 and Hal5 are required for the plasma membrane stability of the K(+) transporter Trk1 and some amino acid and glucose permeases. The transcriptomic analysis presented here indicates alterations in the general control of the metabolism of both nitrogen and carbon. Accordingly, we observed reduced uptake of methionine and leucine in the hal4 hal5 mutant. This decrease correlates with activation of the Gcn2-Gcn4 pathway, as measured by expression of the lacZ gene under the control of the GCN4 promoter. However, with the exception of methionine biosynthetic genes, few amino acid biosynthetic genes are induced in the hal4 hal5 mutant, whereas several genes involved in amino acid catabolism are repressed. Concerning glucose metabolism, we found that this mutant exhibits derepression of respiratory genes in the presence of glucose, leading to an increased activity of mitochondrial enzymes, as measured by succinate dehydrogenase (SDH) activity. In addition, the reduced glucose consumption in the hal4 hal5 mutant correlates with a more acidic intracellular pH and with low activity of the plasma membrane H(+)-ATPase. As a compensatory mechanism for the low glycolytic rate, the hal4 hal5 mutant overexpresses the HXT4 high-affinity glucose transporter and the hexokinase genes. These results indicate that the hal4 hal5 mutant presents defects in the general control of nitrogen and carbon metabolism, which correlate with reduced transport of amino acids and glucose, respectively. A more acidic intracellular pH may contribute to some defects of this mutant.


Assuntos
Carbono/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nitrogênio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Aminoácidos/metabolismo , Transporte Biológico , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
Plant Physiol ; 151(2): 541-58, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19675149

RESUMO

Glycolysis is a central metabolic pathway that, in plants, occurs in both the cytosol and the plastids. The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate with concomitant reduction of NAD(+) to NADH. Both cytosolic (GAPCs) and plastidial (GAPCps) GAPDH activities have been described. However, the in vivo functions of the plastidial isoforms remain unresolved. In this work, we have identified two Arabidopsis (Arabidopsis thaliana) chloroplast/plastid-localized GAPDH isoforms (GAPCp1 and GAPCp2). gapcp double mutants display a drastic phenotype of arrested root development, dwarfism, and sterility. In spite of their low gene expression level as compared with other GAPDHs, GAPCp down-regulation leads to altered gene expression and to drastic changes in the sugar and amino acid balance of the plant. We demonstrate that GAPCps are important for the synthesis of serine in roots. Serine supplementation to the growth medium rescues root developmental arrest and restores normal levels of carbohydrates and sugar biosynthetic activities in gapcp double mutants. We provide evidence that the phosphorylated pathway of Ser biosynthesis plays an important role in supplying serine to roots. Overall, these studies provide insights into the in vivo functions of the GAPCps in plants. Our results emphasize the importance of the plastidial glycolytic pathway, and specifically of GAPCps, in plant primary metabolism.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Metabolismo dos Carboidratos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/deficiência , Raízes de Plantas/crescimento & desenvolvimento , Plastídeos/enzimologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Metabolismo dos Carboidratos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Teste de Complementação Genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicólise/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Mutação/genética , Fenótipo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/ultraestrutura , Plastídeos/efeitos dos fármacos , Plastídeos/genética , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/deficiência , Serina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...