Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Memb Sci ; 6182021.
Artigo em Inglês | MEDLINE | ID: mdl-34092903

RESUMO

We present the thickness-dependent permeance of highly cross-linked polyamide (PA) membranes formed by a molecular layer-by-layer (mLbL) deposition process. The deposition allows for the synthesis of extremely smooth, uniform PA films of tunable thickness, which is counter to the less controlled interfacial polymerization process used commercially. The ability to control and measure the membrane thickness allows us to elucidate the relationships among network structure, transport properties, and separation performance. In this work, a series of large-area mLbL PA membranes is prepared with thickness ranging from less than 5 nm to greater than 100 nm, which can be transferred defect-free via a film floating technique onto a macroporous support layer and challenged with salt solutions. A critical thickness of 15 nm is identified for efficient desalination, and water permeance is described using a multi-layer solution diffusion model that allows for the extraction of material properties relevant to transport. Finally, the model demonstrates the existence of two distinct layers in the mLbL films, one layer comprised of a (5 to 10) nm graded or less cross-linked layer at the surface and a more densely cross-linked layer in the interior of the film. This graded layer appears inherent to the mLbL deposition process and is observed at all film thicknesses.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36936726

RESUMO

We present a series of polyamide membranes synthesized via molecular layer-by-layer (mLbL) deposition of trimesoyl chloride (TMC) and 3,5-diaminobenzoic acid (BA). These membranes exhibit superior NaCl rejection compared to previously reported TMC-BA membranes prepared via interfacial polymerization, with the improved performance of the mLbL films attributable to higher cross-link density facilitated by the stepwise deposition process in good solvents. We compare the TMC-BA series with membranes synthesized from TMC and m-phenylenediamine (MPD), a conventional reverse osmosis membrane chemistry. At the minimum thickness capable of 90 % NaCl rejection, mLbL TMC-BA membranes exhibit 50 % greater water permeance than mLbL TMC-MPD.

3.
Phys Chem Chem Phys ; 22(27): 15658-15663, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32618298

RESUMO

Reverse osmosis using aromatic polyamide membranes is currently the most important technology for seawater desalination. The performance of reverse osmosis membranes is highly dependent on the interplay of their surface chemical groups with water and water contaminants. In order to better understand the underlying mechanisms of these membranes, we study ultrathin polyamide films that chemically resemble reverse osmosis membranes, using ambient pressure X-ray photoelectron spectroscopy. This technique can identify the functional groups at the membrane-water interface and allows monitoring of small shifts in the electron binding energy that indicate interaction with water. We observe deprotonation of free acid groups and formation of a 'water complex' with nitrogen groups in the polymer upon exposure of the membrane to water vapour. The chemical changes are reversed when water is removed from the membrane. While the correlation between functional groups and water uptake is an established one, this experiment serves to understand the nature of their chemical interaction, and opens up possibilities for tailoring future materials to specific requirements.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38681508

RESUMO

The ever-growing catalog of monomers being incorporated into block polymers affords exceptional control over phase behavior and nanoscale structure. The segregation strength, χN, is the fundamental link between the molecular-level detail and the thermodynamics. However, predicting phase behavior mandates at least one experimental measurement of χN for each pair of blocks. This typically requires access to the disordered state. We describe a method for estimating χN from small-angle X-ray scattering measurements of the interfacial width between lamellar microdomains, tx, in the microphase-separated melt. The segregation strength is determined by comparing tx to self-consistent field theory calculations of the intrinsic interfacial width, ti, as a function of the mean-field χN. The method is validated using a series of independent experimental measurements of tx and χN, measured via the order-disorder transition temperature, TODT. The average absolute relative difference between χN calculated from tx and the value calculated from TODT is a modest 11%. Corrections for nonplanarity of the interfaces are investigated but do not improve the agreement between the experiments and theory. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.

5.
ACS Nano ; 12(5): 4660-4668, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29723470

RESUMO

Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morphology consisting of concentric shells or a disordered lamellar morphology when chain dynamics are sufficiently slow to prevent defect annealing during solvent exchange. Blends of homopolymer and block copolymer in the feed stream generate more complex internally structured colloids, such as those with hierarchically structured Janus and patchy morphologies, due to additional phase separation and kinetic trapping effects. The ability of the FNP process to generate such a wide range of morphologies using a simple and scalable setup provides a pathway to manufacturing internally structured colloids on an industrial scale.

6.
ACS Infect Dis ; 4(6): 970-979, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29575888

RESUMO

Malaria poses a major burden on human health and is becoming increasingly difficult to treat due to the development of antimalarial drug resistance. The resistance issue is further exacerbated by a lack of patient adherence to multi-day dosing regimens. This situation motivates the development of new antimalarial treatments that are less susceptible to the development of resistance. We have applied Flash NanoPrecipitation (FNP), a polymer-directed self-assembly process, to form stable, water-dispersible nanoparticles (NPs) of 50-400 nm in size containing OZ439, a poorly orally bioavailable but promising candidate for single-dose malaria treatment developed by Medicines for Malaria Venture (MMV). During the FNP process, a hydrophobic OZ439 oleate ion paired complex was formed and was encapsulated into NPs. Lyophilization conditions for the NP suspension were optimized to produce a dry powder. The in vitro release rates of OZ439 encapsulated in this powder were determined in biorelevant media and compared with the release rates of the unencapsulated drug. The OZ439 NPs exhibit a sustained release profile and several-fold higher release concentrations compared to that of the unencapsulated drug. In addition, XRD suggests the drug was stabilized into an amorphous form within the NPs, which may explain the improvement in dissolution kinetics. Formulating OZ439 into NPs in this way may be an important step toward developing a single-dose oral malaria therapeutic, and offers the possibility of reducing the amount of drug required per patient, lowering delivery costs, and improving dosing compliance.


Assuntos
Adamantano/análogos & derivados , Antimaláricos/administração & dosagem , Composição de Medicamentos , Nanopartículas/química , Peróxidos/administração & dosagem , Adamantano/administração & dosagem , Adamantano/química , Adamantano/farmacocinética , Antimaláricos/química , Antimaláricos/farmacocinética , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Estrutura Molecular , Peróxidos/química , Peróxidos/farmacocinética
7.
ACS Macro Lett ; 6(2): 112-116, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35632902

RESUMO

Methods for the preparation of narrow-distribution ROMP polycyclopentene are developed to suppress the rate of acyclic metathesis: reaction between the active metal-carbene chain end and an acyclic olefin in the reaction medium. In particular, we investigate interchain metathesis, which generates linear polymers with "scrambled" chain lengths, and we demonstrate the formation of ring polymers by intrachain backbiting and quantify their content in the reaction product. By controlling the relative rates of propagation versus these side reactions, we prepare ROMP polycyclopentene with low dispersity to substantially higher molecular weights than have been reported previously. Polymerization kinetics are quantitatively described by a kinetic model, which accounts for the reversible binding of added trimethylphosphine to the active chain end.

8.
Langmuir ; 30(2): 611-6, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24392824

RESUMO

Thin film composite membranes can selectively separate mono- and divalent ions from water via solution-diffusion of each species through a dense but ultrathin, highly cross-linked polymer "skin" layer; water is transported across the membrane faster than associated salts. Changing the selectivity of the "skin" layer typically requires adjusting the monomer chemistries that make up the polymer "skin" layer, but doing so also impacts a host of other membrane properties. Here, we employ electrostatic layer-by-layer deposition of inorganic nanoparticles to enhance the permselectivity of an existing commercial nanofiltration membrane. We chose this approach because it is simple and robust and does not require any change to the underlying chemistry of the thin film composite (TFC) membrane. We found that a single layer of nanoparticles was sufficient to increase the permselectivity of the membrane by nearly 50%, compared to the virgin TFC membrane. In order to understand the mechanism for permselectivity enhancement, we developed a modified solution-diffusion model to account for the additional hydraulic resistance of the nanoparticle layer, which can faithfully capture the effect of nanoparticle layer thickness on the observed water and salt flux of the modified TFC membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...