Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 109(11): 1837-1843, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38153366

RESUMO

At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2/H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2-responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2-induced vascular contraction. Although blood flow can influence tissue CO2/H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2/H+-induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2/H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2/H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2/H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson's disease.


Assuntos
Dióxido de Carbono , Células Quimiorreceptoras , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiologia , Animais , Humanos , Dióxido de Carbono/metabolismo , Neurônios/fisiologia , Neurônios/metabolismo , Vasoconstrição/fisiologia , Respiração , Vasodilatação/fisiologia
2.
J Neurophysiol ; 125(3): 699-719, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427575

RESUMO

Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.


Assuntos
Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Receptores de Neurotransmissores/fisiologia , Mecânica Respiratória/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Humanos , Bulbo/citologia , Receptores Purinérgicos/fisiologia , Respiração , Neurônios Serotoninérgicos/fisiologia
3.
J Physiol ; 597(7): 1919-1934, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30724347

RESUMO

KEY POINTS: Cholinergic projections from the pedunculopontine tegmental nucleus (PPTg) to the retrotrapezoid nucleus (RTN) are considered to be important for sleep-wake state-dependent control of breathing. The RTN also receives cholinergic input from the postinspiratory complex. Stimulation of the PPTg increases respiratory output under control conditions but not when muscarinic receptors in the RTN are blocked. The data obtained in the present study support the possibility that arousal-dependent modulation of breathing involves recruitment of cholinergic projections from the PPTg to the RTN. ABSTRACT: The pedunculopontine tegmental nucleus (PPTg) in the mesopontine region has important physiological functions, including breathing control. The PPTg contains a variety of cell types, including cholinergic neurons that project to the rostral aspect of the ventrolateral medulla. In addition, cholinergic signalling in the retrotrapezoid nucleus (RTN), a region that contains neurons that regulate breathing in response to changes in CO2 /H+ , has been shown to activate chemosensitive neurons and increase inspiratory activity. The present study aimed to identify the source of cholinergic input to the RTN and determine whether cholinergic signalling in this region influences baseline breathing or the ventilatory response to CO2 in conscious male Wistar rats. Retrograde tracer Fluoro-Gold injected into the RTN labelled a subset of cholinergic PPTg neurons that presumably project directly to the chemosensitive region of the RTN. In unrestrained awake rats, unilateral injection of the glutamate (10 mm/100 nL) in the PPTg decreased tidal volume (VT ) but otherwise increased respiratory rate (fR ) and net respiratory output as indicated by an increase in ventilation (VE ). All respiratory responses elicited by PPTg stimulation were blunted by prior injection of methyl-atropine (5 mm/50-75 nL) into the RTN. These results show that stimulation of the PPTg can increase respiratory activity in part by cholinergic activation of chemosensitive elements of the RTN. Based on previous evidence that cholinergic PPTg projections may simultaneously activate expiratory output from the pFRG, we speculate that cholinergic signalling at the level of RTN region could also be involved in breathing regulation.


Assuntos
Neurônios Colinérgicos/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Animais , Derivados da Atropina/farmacologia , Pressão Sanguínea , Fenômenos Eletrofisiológicos , Ácido Glutâmico/farmacologia , Ácido Cinurênico/farmacologia , Masculino , Ratos , Ratos Wistar , Receptor Muscarínico M1/metabolismo , Fenômenos Fisiológicos Respiratórios
4.
Neuropharmacology ; 138: 47-56, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29857188

RESUMO

The brain regulates breathing in response to changes in tissue CO2/H+ via a process called central chemoreception. Neurons and astrocytes in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors. The role of astrocytes in this process appears to involve CO2/H+-dependent release of ATP to enhance activity of chemosensitive RTN neurons. Considering that in most brain regions extracellular ATP is rapidly broken down to adenosine by ectonucleotidase activity and since adenosine is a potent neuromodulator, we wondered whether adenosine signaling contributes to RTN chemoreceptor function. To explore this possibility, we pharmacologically manipulated activity of adenosine receptors in the RTN under control conditions and during inhalation of 7-10% CO2 (hypercapnia). In urethane-anesthetized or unrestrained conscious rats, bilateral injections of adenosine into the RTN blunted the hypercapnia ventilatory response. The inhibitory effect of adenosine on breathing was blunted by prior RTN injection of a broad spectrum adenosine receptor blocker (8-PT) or a selective A1-receptor blocker (DPCPX). Although RTN injections of 8PT, DPCPX or the ectonucleotidase inhibitor ARL67156 did not affected baseline breathing in either anesthetized or awake rats. We did find that RTN application of DPCPX or ARL67156 potentiated the respiratory frequency response to CO2, suggesting a portion of ATP released in the RTN during high CO2/H+ is converted to adenosine and serves to limit chemoreceptor function. These results identify adenosine as a novel purinergic regulator of RTN chemoreceptor function during hypercapnia.


Assuntos
Adenosina/metabolismo , Hipercapnia/metabolismo , Bulbo/metabolismo , Receptores Purinérgicos P1/metabolismo , Reflexo/fisiologia , Respiração , Adenosina/administração & dosagem , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/metabolismo , Hipercapnia/tratamento farmacológico , Masculino , Bulbo/efeitos dos fármacos , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos Wistar , Reflexo/efeitos dos fármacos , Respiração/efeitos dos fármacos , Vigília
5.
J Neurophysiol ; 118(3): 1690-1697, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28679838

RESUMO

Evidence indicates that CO2/H+-evoked ATP released from retrotrapezoid nucleus (RTN) astrocytes modulates the activity of CO2-sensitive neurons. RTN astrocytes also sense H+ by inhibition of Kir4.1 channels; however, the relevance of this pH-sensitive current remains unclear since ATP release appears to involve CO2-dependent gating of connexin 26 hemichannels. Considering that depolarization mediated by H+ inhibition of Kir4.1 channels is expected to increase sodium bicarbonate cotransporter (NBC) conductance and favor Ca2+ influx via the sodium calcium exchanger (NCX), we hypothesize that depolarization in the presence of CO2 is sufficient to facilitate ATP release and enhance respiratory output. Here, we confirmed that acute exposure to fluorocitrate (FCt) reversibly depolarizes RTN astrocytes and increased activity of RTN neurons by a purinergic-dependent mechanism. We then made unilateral injections of FCt into the RTN or two other putative chemoreceptor regions (NTS and medullary raphe) to depolarize astrocytes under control conditions and during P2-recepetor blockade while measuring cardiorespiratory activities in urethane-anesthetized, vagotomized, artificially ventilated male Wistar rats. Unilateral injection of FCt into the RTN increased phrenic (PNA) amplitude and frequency without changes in arterial pressure. Unilateral injection of pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS, a P2-receptor antagonist) into the RTN dampened both PNA amplitude and frequency responses to FCt. Injection of MRS2179 (P2Y1-receptor antagonist) into the RTN did not affect the FCt-induced respiratory responses. Fluorocitrate had no effect on breathing when injected into the NTS or raphe. These results suggest that depolarization can facilitate purinergic enhancement of respiratory drive from the RTN.NEW & NOTEWORTHY Astrocytes in the retrotrapezoid nucleus (RTN) are known to function as respiratory chemoreceptors; however, it is not clear whether changes in voltage contribute to astrocyte chemoreception. We showed that depolarization of RTN astrocytes at constant CO2 levels is sufficient to modulate RTN chemoreception by a purinergic-dependent mechanism. These results support the possibility that astrocyte depolarization can facilitate purinergic enhancement of respiratory drive from the RTN.


Assuntos
Astrócitos/fisiologia , Citratos/farmacologia , Potenciais da Membrana , Respiração , Complexo Olivar Superior/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiologia , Masculino , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/fisiologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2/metabolismo , Complexo Olivar Superior/citologia
6.
J Physiol ; 594(2): 407-19, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26572090

RESUMO

KEY POINTS: ACh is an important modulator of breathing, including at the level of the retrotrapezoid nucleus (RTN), where evidence suggests that ACh is essential for the maintenance of breathing. Despite this potentially important physiological role, little is known about the mechanisms responsible for the cholinergic control of RTN function. In the present study, we show at the cellular level that ACh increases RTN chemoreceptor activity by a CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2) signalling and downstream inhibition of KCNQ channels. These results dispel the theory that ACh is required for RTN chemoreception by showing that ACh, similar to serotonin and other modulators, controls the activity of RTN chemoreceptors without interfering with the mechanisms by which these cells sense H(+). By identifying the mechanisms by which wake-on neurotransmitters such as ACh modulate RTN chemoreception, the results of the present study provide a framework for understanding the molecular basis of the sleep-wake state-dependent control of breathing. ABSTRACT: ACh has long been considered important for the CO2/H(+)-dependent drive to breathe produced by chemosensitive neurons in the retrotrapezoid nucleus (RTN). However, despite this potentially important physiological role, almost nothing is known about the mechanisms responsible for the cholinergic control of RTN function. In the present study, we used slice-patch electrophysiology and pharmacological tools to characterize the effects of ACh on baseline activity and CO2/H(+)-sensitivity of RTN chemoreceptors, as well as to dissect the signalling pathway by which ACh activates these neurons. We found that ACh activates RTN chemoreceptors in a dose-dependent manner (EC50 = 1.2 µm). The firing response of RTN chemoreceptors to ACh was mimicked by a muscarinic receptor agonist (oxotremorine; 1 µm), and blunted by M1- (pirezenpine; 2 µm) and M3- (diphenyl-acetoxy-N-methyl-piperidine; 100 nm) receptor blockers, but not by a nicotinic-receptor blocker (mecamylamine; 10 µm). Furthermore, pirenzepine, diphenyl-acetoxy-N-methyl-piperidine and mecamylamine had no measurable effect on the CO2/H(+)-sensitivity of RTN chemoreceptors. The effects of ACh on RTN chemoreceptor activity were also blunted by inhibition of inositol 1,4,5-trisphosphate receptors with 2-aminoethoxydiphenyl borate (100 µm), depletion of intracellular Ca(2+) stores with thapsigargin (10 µm), inhibition of casein kinase 2 (4,5,6,7-tetrabromobenzotriazole; 10 µm) and blockade of KCNQ channels (XE991; 10 µm). These results show that ACh activates RTN chemoreceptors by a CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2) signalling and downstream inhibition of KCNQ channels. Identifying the components of the signalling pathway coupling muscarinic receptor activation to changes in chemoreceptor activity may provide new potential therapeutic targets for the treatment of respiratory control disorders.


Assuntos
Acetilcolina/metabolismo , Células Quimiorreceptoras/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Canais de Potássio KCNQ/metabolismo , Bulbo/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/fisiologia , Bulbo/citologia , Bulbo/fisiologia , Agonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos
8.
J Physiol ; 593(5): 1067-74, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25524282

RESUMO

The rostral ventrolateral medulla oblongata (RVLM) contains two functionally distinct types of neurons that control and orchestrate cardiovascular and respiratory responses to hypoxia and hypercapnia. One group is composed of the central chemoreceptor neurons of the retrotrapezoid nucleus, which provides a CO2/H(+) -dependent drive to breathe and serves as an integration centre and a point of convergence of chemosensory information from other central and peripheral sites, including the carotid bodies. The second cluster of RVLM cells forms a population of neurons belonging to the C1 catecholaminergic group that controls sympathetic vasomotor tone in resting conditions and in conditions of hypoxia and hypercapnia. Recent evidence suggests that ATP-mediated purinergic signalling at the level of the RVLM co-ordinates cardiovascular and respiratory responses triggered by hypoxia and hypercapnia by activating retrotrapezoid nucleus and C1 neurons, respectively. The role of ATP-mediated signalling in the RVLM mechanisms of cardiovascular and respiratory activities is the main subject of this short review.


Assuntos
Células Quimiorreceptoras/metabolismo , Bulbo/metabolismo , Receptores Purinérgicos/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Dióxido de Carbono/sangue , Humanos , Bulbo/fisiologia , Sistema Nervoso Simpático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA