Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 31(1): 103878, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125735

RESUMO

Tamarindus indica L., is widely used tree in ayurvedic medicine. Here, we aimed to understand the presence of important constituents in seeds and peel of Tamarind fruits and their biological activities. Hence, seeds and peel of Tamarind fruits are used for further extraction process by soxhlet method (chloroform and ethyl acetate solvents). Results suggest that the ethyl acetate extract (seeds) consists of terpenoids (72.29 ± 0.513 mg/g), phenolic content (68.67 ± 2.11 mg/g) and flavonoids (26.36 ± 2.03 mg/g) whereas chloroform extract (seeds) has terpenoids (42.29 ± 0.98 mg/g). Similarly, chloroform extract (peel) has terpenoids (25.96 ± 3.20 mg/g) and flavonoids (46.36 ± 2.03 mg/g) whereas ethyl acetate extract (peel) has terpenoids (62.93 ± 0.987 mg/g). Furthermore, anti-inflammation activity results revealed that the chloroform extract of peel was found to be more effective with IC50 of 226.14 µg/ml by protein denaturation analysis and with IC50 of 245.5 µg/ml on lipoxygenase inhibition activity. Chloroform extract (peel and seeds) shown better antioxidant activity using DPPH than ethyl acetate extract (peel and seeds). Ethyl acetate extract of seeds showed impressive potency by inhibiting the growth of fungus, Candida albicans. Additionally, ethyl acetate extract of seeds showed impressive potency inhibiting the growth of Escherichia coli than Bacillus cereus. GC-MS analysis shown the existence of diverse set of phytochemicals in each extract. Overall, comparative studies highlight the effectiveness of seeds extracts than peel extracts. Moreover, GC-MS results suggest that the seeds and peel extracts (chloroform and ethyl acetate) contains a wide range of compounds (including flavonoids, isovanillic acid, fatty acids and phenolic compounds) which can be utilized for therapeutic purpose.

2.
Environ Technol ; : 1-11, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37440597

RESUMO

ABSTRACTAnaerobic digestion (AD) relies on the cooperation of specific microbial communities, making it susceptible to process disruptions that could impact biogas production. In this regard, this study presents a technological solution based on the Arduino platform, in the form of a simple online monitoring system that can track the produced biogas profile, named as biogas analyzer module (BAM). The applicability of the BAM focused on monitoring the biogas produced from sugarcane vinasse inoculated with sewage sludge biodigestion processed in mesophilic conditions (38 oC), in a pH range of 6.5-7.5, and following a three-stage operational model: (i) an adaptation (168 h), (ii) complete mixing (168 h), and (iii) bio-stimulation with glycerol (192 h). Then, the lab-made BAM was used to trace the produced biogas profile, which registered a total biogas volume of 8,719.86 cm3 and biomethane concentration of 95.79% (vol.), removing 90.8% (vol) of carbon dioxide (CO2) and 65.2% (vol) of hydrogen sulfide (H2S). In conclusion, the results ensured good accuracy and efficiency to the device created by comparisons with established standards (chromatographic and colorimetric methods), as well as the cost reduction. The developed device would likely be six times cheaper than what is available in the market.

3.
Chemosphere ; 336: 139192, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353172

RESUMO

Tannery wastewater (TWW) has high BOD, COD, TS and variety of pollutants like chromium, formaldehydes, biocides, oils, chlorophenols, detergents and phthalates etc. Besides these pollutants, TWW also rich source of nutrients like nitrogen, phosphorus, carbon and sulphur etc. that can be utilized by microalgae during their growth. Direct disposal of TWW into the environment may lead severe environmental and health threats, therefore it needs to be treated adequately. Microalgae are considered as an efficient microorganisms (fast growing, adaptability and strain robustness, high surface to volume ratio, energy saving) for remediation of wastewaters with simultaneous biomass recovery and generation of value-added products (VAPs) such as biofuels, biohydrogen, biopolymer, biofertilizer, pigments, bioethanol, bioactive compounds, nutraceutical etc. Most microalgae are photosynthetic and use CO2 and light energy to synthesise carbohydrate and reduces the emission of greenhouse gasses. Microalgae are also reported to remove heavy metals and antibiotics from wastewaters by bioaccumulation, biodegradation and biosorption. Microalgal treatment can be an alternative of conventional processes with generation of VAPs. The use of biotechnology in wastewater remediation with simultaneous generation of VAPs is trending. The validation of economic viability and environmental sustainability, life cycle assessment studies and techno-economic analysis is undergoing. Thus, in this review, the characteristics of TWW and microalgae are summarized, which manifest microalgae as potential candidates for wastewater remediation with simultaneous production of VAPs. Further, the treatment mechanisms, various factors (physical, chemical, mechanical and biological etc.) affecting treatment efficiency as well as challenges associated with microalgal remediation are also discussed.


Assuntos
Poluentes Ambientais , Microalgas , Águas Residuárias , Microalgas/metabolismo , Biodegradação Ambiental , Biotecnologia , Poluentes Ambientais/metabolismo , Biomassa , Biocombustíveis
4.
Chemosphere ; 326: 138391, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933841

RESUMO

Petroleum product is an essential resource for energy, that has been exploited by wide range of industries and regular life. A carbonaceous contamination of marine and terrestrial environments caused by errant runoffs of consequential petroleum-derived contaminants. Additionally, petroleum hydrocarbons can have adverse effects on human health and global ecosystems and also have negative demographic consequences in petroleum industries. Key contaminants of petroleum products, primarily includes aliphatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), resins, and asphaltenes. On environmental interaction, these pollutants result in ecotoxicity as well as human toxicity. Oxidative stress, mitochondrial damage, DNA mutations, and protein dysfunction are a few key causative mechanisms behind the toxic impacts. Henceforth, it becomes very evident to have certain remedial strategies which could help on eliminating these xenobiotics from the environment. This brings the efficacious application of bioremediation to remove or degrade pollutants from the ecosystems. In the recent scenario, extensive research and experimentation have been implemented towards bio-benign remediation of these petroleum-based pollutants, aiming to reduce the load of these toxic molecules in the environment. This review gives a detailed overview of petroleum pollutants, and their toxicity. Methods used for degrading them in the environment using microbes, periphytes, phyto-microbial interactions, genetically modified organisms, and nano-microbial remediation. All of these methods could have a significant impact on environmental management.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes do Solo , Humanos , Biodegradação Ambiental , Ecossistema , Petróleo/metabolismo , Hidrocarbonetos/toxicidade , Poluentes Ambientais/toxicidade , Poluentes do Solo/análise
5.
Environ Sci Pollut Res Int ; 30(34): 81450-81473, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36637649

RESUMO

Microplastics (MPs) are ubiquitous pollutants persisting almost everywhere in the environment. With the increase in anthropogenic activities, MP accumulation is increasing enormously in aquatic, marine, and terrestrial ecosystems. Owing to the slow degradation of plastics, MPs show an increased biomagnification probability of persistent, bioaccumulative, and toxic substances thereby creating a threat to environmental biota. Thus, remediation of MP-pollutants requires efficient strategies to circumvent the mobilization of contaminants leaching into the water, soil, and ultimately to human beings. Over the years, several microorganisms have been characterized by the potential to degrade different plastic polymers through enzymatic actions. Metagenomics (MGs) is an effective way to discover novel microbial communities and access their functional genetics for the exploration and characterization of plastic-degrading microbial consortia and enzymes. MGs in combination with metatranscriptomics and metabolomics approaches are a powerful tool to identify and select remediation-efficient microbes in situ. Advancement in bioinformatics and sequencing tools allows rapid screening, mining, and prediction of genes that are capable of polymer degradation. This review comprehensively summarizes the growing threat of microplastics around the world and highlights the role of MGs and computational biology in building effective response strategies for MP remediation.


Assuntos
Poluentes Ambientais , Microbiota , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos/metabolismo , Metagenômica , Ecossistema , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
6.
Bioprocess Biosyst Eng ; 46(8): 1077-1097, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36331626

RESUMO

The worldwide fossil fuel reserves are rapidly and continually being depleted as a result of the rapid increase in global population and rising energy sector needs. Fossil fuels should not be used carelessly since they produce greenhouse gases, air pollution, and global warming, which leads to ecological imbalance and health risks. The study aims to discuss the alternative renewable energy source that is necessary to meet the needs of the global energy industry in the future. Both microalgae and macroalgae have great potential for several industrial applications. Algae-based biofuels can surmount the inadequacies presented by conventional fuels, thereby reducing the 'food versus fuel' debate. Cultivation of algae can be performed in all three systems; closed, open, and hybrid frameworks from which algal biomass is harvested, treated and converted into the desired biofuels. Among these, closed photobioreactors are considered the most efficient system for the cultivation of algae. Different types of closed systems can be employed for the cultivation of algae such as stirred tank photobioreactor, flat panel photobioreactor, vertical column photobioreactor, bubble column photobioreactor, and horizontal tubular photobioreactor. The type of cultivation system along with various factors, such as light, temperature, nutrients, carbon dioxide, and pH affect the yield of algal biomass and hence the biofuel production. Algae-based biofuels present numerous benefits in terms of economic growth. Developing a biofuel industry based on algal cultivation can provide us with a lot of socio-economic advantages contributing to a publicly maintainable result. This article outlines the third-generation biofuels, how they are cultivated in different systems, different influencing factors, and the technologies for the conversion of biomass. The benefits provided by these new generation biofuels are also discussed. The development of algae-based biofuel would not only change environmental pollution control but also benefit producers' economic and social advancement.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Fotobiorreatores , Alimentos
7.
Chemosphere ; 312(Pt 1): 137072, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36336023

RESUMO

This review paper emphasised on the origin of hexavalent chromium toxicity in tannery wastewater and its remediation using novel Microbial Fuel Cell (MFC) technology, including electroactive bacteria, which are known as exoelectrogens, to simultaneously treat wastewater and its action in the production of bioenergy and the mechanism of Cr6+ reduction. Also, there are various parameters like electrode, pH, mode of operation, time of operation, and type of exchange membrane used for promising results shown in enhancing MFC production and remediation of Cr6+. Destructive anthropological activities, such as leather making and electroplating industries are key sources of hexavalent chromium contamination in aquatic repositories. When Cr6+ enters the food chain and enters the human body, it has the potential to cause cancer. MFC is a green innovation that generates energy economically through the reduction of toxic Cr6+ to less toxic Cr3+. The organic substrates utilized at the anode of MFC act as electrons (e-) donors. This review also highlighted the utilization of cheap substrates to make MFCs more economically suitable and the energy production at minimum cost.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Humanos , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Cromo/metabolismo , Eletrodos , Eletricidade
8.
Sci Total Environ ; 861: 160571, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36471520

RESUMO

In the current scenario, plastic pollution has become one of the serious environmental hazard problems due to its improper handling and insufficiency in degradation. Nanoplastics (NPs) are formed when plastic fragments are subjected to ultraviolet radiation, natural weathering, and biodegradation. This review paper focuses on the source of origin, bioaccumulation, potential nanoplastics toxicity impact towards environment and human system and management strategies towards plastic pollution. Moreover, this study demonstrates that nanoplastics interfere with metabolic pathways and cause organ dysfunction. A wide range of studies have documented the alteration of organism physiology and behavior, caused by NPs exposure. A major source of NPs exposure is via ingestion because these plastics are found in foods or food packaging, however, they can also enter the human body via inhalation but in a less well-defined form. In recent literature, the studies demonstrate the mechanisms for NP uptake, affecting factors that have been discussed followed by cytotoxic mechanisms of NPs. However, study on challenges regarding NPs toxicity for the risk assessment of human health is limited. It is important to perform and focus more on the possible impacts of NPs on human health to identify the key challenges and explore the potential impacts of their environmental accumulation and its toxicity impacts.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Raios Ultravioleta , Bioacumulação , Biodegradação Ambiental , Alimentos , Poluentes Químicos da Água/toxicidade
9.
Environ Sci Pollut Res Int ; 30(28): 71599-71613, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33948844

RESUMO

Pharmaceutical active drug(s) especially sulfamethazine (SMZ) is considered as one of the major emerging microcontaminants due its long-term existence in the environmental system and that can influence on the developmental of antibacterial resistance genes. Because of this region it has a great concern in the aquatic system. Moreover, the vast utilization of SMZ, excretion of undigested portion by animals and also through dumping or mishandling, SMZ is frequently detected in various samples (including water) of different places and its surroundings. Additionally, reports shown it has toxic effect against microalgae and mice. Thus, that can lead to several investigators, focusing on removal of SMZ alone or in combination of other drugs in wastewater treatment plants (WWTPs) either by abiotic and/or biotic treatment methods. The present review provides an overview of the toxic effect of SMZ and SMZ degradation/removal in abiotic and biotic processes. Finally, reveals the need of further implication of integrated treatments (including engineered biological mediators) to understand ideal biological approaches for the mineralization of SMZ.


Assuntos
Microalgas , Poluentes Químicos da Água , Animais , Camundongos , Sulfametazina , Poluentes Químicos da Água/toxicidade , Antibacterianos/farmacologia , Água
10.
Plants (Basel) ; 11(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559689

RESUMO

Commonly known as a subsistence culture, cassava came to be considered a commodity and key to adding value. However, this tuber's processing for starch and flour production is responsible for generating a large amount of waste that causes serious environmental problems. This biomass of varied biochemical composition has excellent potential for producing fuels (biogas, bioethanol, butanol, biohydrogen) and non-energetic products (succinic acid, glucose syrup, lactic acid) via biorefinery. However, there are environmental challenges, leading to uncertainties related to the sustainability of biorefineries. Thus, the provision of information generated in life cycle assessment (LCA) can help reduce bottlenecks found in the productive stages, making production more competitive. Within that, this review concentrates information on the production of value-added products, the environmental impact generated, and the sustainability of biorefineries.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36240897

RESUMO

Emerging infectious diseases (EID) as well as reappearing irresistible infections are expanding worldwide. Utmost of similar cases, it was seen that the EIDs have long been perceived as a predominant conclusion of host-pathogen adaption. Here, one should get to analyze their host-pathogen interlink and their by needs to look ways, as an example, by exploitation process methodology particularly molecular docking and molecular dynamics simulation, have been utilized in recent time as the most outstanding tools. Hence, we have overviewed some of important factors that influences on EIDs especially HIV/AIDs, H1N1 and coronavirus. Moreover, here we specified the importance of molecular docking applications especially molecular dynamics simulations approach to determine novel compounds on the emerging infectious diseases. Additionally, in vivo and in vitro studies approach to determine novel compounds on the emerging infectious diseases that has implemented to evaluate the limiting affinities between small particles as well as macromolecule that can further, used as a target of HIV/AIDs, H1N1, and coronavirus were also discussed. These novel drug molecules approved in vivo and in vitro studies with reaffirm results and hence, it is clear that the computational methods (mainly molecular docking and molecular dynamics) are found to be more effective technique for drug discovery and medical practitioners.

12.
Bioresour Technol ; 363: 127926, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36100182

RESUMO

Biocatalysts, including live microbial cells/enzymes, have been considered a predominant and advantageous tool for effectively transforming biomass into biofuels and valued biochemicals. However, high production costs, separation, and reusability limit its practical application. Immobilization of single and multi-enzymes by employing different nano-supports have gained massive attention because of its elevated exterior domain and high enzymatic performance. Application of nanobiocatalyst can overcome the drawbacks mainly, stability and reusability, thus reflecting the importance of biomass-based biorefinery to make it profitable and sustainable. This review provides an in-depth, comprehensive analysis of nanobiocatalysts systems concerning nano supports and biocatalytic performance characteristics. Furthermore, the effects of nanobiocatalyst on waste biomass to biofuel and valued bioproducts in the biorefinery approach and their critical assessment are discussed. Lastly, this review elaborates commercialization and market outlooks of the bioconversion process using nanobiocatalyst, followed by different strategies to overcome the limitations and future research directions on nanobiocatalytic-based industrial bioprocesses.


Assuntos
Biocombustíveis , Indústrias , Biocatálise , Biomassa
13.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930295

RESUMO

Various studies have shown that the microbial proteins are often more stable than belongs to other sources like plant and animal origin. Hence, the interest in microbial enzymes has gained much attention due to many potential applications like bioenergy, biofuel production, biobleaching, bioconversion and so on. Additionally, recent trends revealed that the interest in isolating novel microbes from harsh environments have been the main focus of many scientists for various applications. Basically, industrially important enzymes can be categorized into mainly three groups: carbohydrases, proteases, and lipases. Among those, the enzymes especially carbohydrases involved in production of sugars. Carbohydrases include amylases, xylanases, pectinases, cellulases, chitinases, mannases, laccases, ligninases, lactase, glucanase, and glucose oxidase. Thus, here, an approach has been made to highlight five enzymes namely amylase, cellulase, laccase, pectinase, and xylanase from different sources with special emphasis on their properties, mechanism, applications, production optimization, purification, molecular approaches for its enhanced and stable production, and also biotechnological perspectives of its future development. Also, green and sustainable catalytic conversion strategies using nanoparticles of these enzymes have also been discussed. This review will provide insight into the carbohydrases importance and their usefulness that will help to the researchers working in this field.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35653025

RESUMO

Various types of colored pigments have been recovered naturally from biological sources including shells, flowers, insects, and so on in the past. At present, such natural colored substances (dyes) are replaced by manmade dyes. On the other hand, due to their continuous usage in various purpose, these artificial dyes or colored substances persist in the environmental surroundings. For example, industrial wastewater contains diverse pollutant substances including dyes. Several of these (artificial dyes) were found to be toxic to living organisms. In recent times, microbial-based removal of dye(s) has gained more attention. These methods were relatively inexpensive for eliminating such contaminants in the environmental system. Hence, various researchers were isolated microbes from environmental samples having the capability of decolorizing synthetic dyes from industrial wastewater. Furthermore, the microorganisms which are genetically engineered found higher degradative/decolorize capacity to target compounds in the natural environs. Very few reviews are available on specific dye treatment either by chemical treatments or by bacteria and/or fungal treatments. Here, we have enlightened literature reports on the removal of different dyes in microbes like bacteria (including anaerobic and aerobic), fungi, GEM, and microbial enzymes and also green-synthesized nanoparticles. This up-to-date literature survey will help environmental managements to co-up such contaminates in nature and will help in the decolorization of dyes.

15.
Int J Biol Macromol ; 206: 768-776, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35306013

RESUMO

Calmodulin-binding transcription activator (CAMTA) are a group of transcription factors that are known to perform various important biological functions in plants. Here, we report 7 putative CAMTA transcription factors identified from finger millet transcriptome data. They were further analyzed for physicochemical properties, subcellular localization, conserved domains and motifs, Gene Ontology (GO) terms, phylogeny, 3D structure prediction and CAMTA-Ca2+-Calmodulin interaction through protein-protein docking. All EcCAMTAs were found to be localized in the nucleus and possessed a calmodulin binding domain (CaMBD). GO results indicated the involvement of CAMTAs in DNA binding and protein binding molecular functions. Phylogenetic analysis classified EcCAMTA genes into 3-subgroups. 3D-structure of CAMTA proteins was elucidated through ab-initio protein modeling and its interaction with Calmodulin was investigated by docking studies. Our study provides molecular insight into the structure and function of CAMTA genes in finger millet and also highlights the role of omics-based in-silico approaches for identification of novel gene families in the absence of a reference genome or annotated database. This being the first study of CAMTA transcription factor family in finger millet, it could serve as a resource for further studies of CAMTA genes either in finger millet or other related millets and cereal crops.


Assuntos
Eleusine , Calmodulina/genética , Eleusine/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
16.
Mol Biotechnol ; 64(9): 984-1002, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35279799

RESUMO

The present study was defined to evaluate the effect of a combinational approach of applying phosphate-solubilizing bacteria and alkaline phosphatase for plant growth promotion as a novel strategy. An extracellular phosphatase producing novel Pseudomonas asiatica strain ZKB1 was isolated from ant hill soil. Alkaline phosphatase production was statistically optimized by Plackett-Burman and central composite designs with a yield of 42.45 U/ml and 5.88-fold enhancement. Alkaline phosphatase was purified by column chromatography (DEAE-Cellulose and Sephadex G-100) with 17.55-fold purification and specific activity of 87.77 U/mg. The molecular mass of purified phosphatase was ~ 45 kDa. The optimum pH and temperature were 9.0 and 50 °C, respectively, revealing alkali-thermostability. Phosphatase exhibited the highest specificity toward p-nitrophenyl phosphate disodium salt. Kinetic analysis revealed Km (0.434 mM) and Vmax (264.44 U/mg). Alkaline phosphatase and Pseudomonas asiatica strain ZKB1 as phosphate-solubilizing bacteria were assessed for their ability to induce plant growth in pot experiments with Phaseolus mungo seeds. Seeds soaked in bacterial culture broth and irrigated with increased phosphatase concentration demonstrated better growth with plumule and radical length of 14.8 ± 0.2 cm and 3.5 ± 0.4 cm, respectively. Results were consistent with the combinational approach in terms of enhanced growth. The study suggests the application of alkaline phosphatases in agricultural management, crop improvements, and soil fertility enhancement.


Assuntos
Fosfatase Alcalina , Fosfatos , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Pseudomonas , Solo , Especificidade por Substrato
17.
Polymers (Basel) ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35160637

RESUMO

This study explored the potential of abundantly available sodium lignosulfonate (LS) as a reducer and fabricating agent in preparing silver nanoparticles (LS-Ag NPs). The operational conditions were optimized to make the synthesis process simpler, rapid, and eco-friendly. The prepared LS-Ag NPs were analyzed via UV-Vis spectroscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy. Results demonstrated that LS-Ag NPs were of crystalline structure, capped with LS constituents, and spherical in shape with a size of approximately 20 nm. Under optimized conditions, LS-Ag NPs exhibited significant photocatalytic activity in Reactive Yellow 4G degradation. The effects of photocatalyst (LS-Ag NPs) dosage, dye concentration, and its reusability for dye degradation were studied to make the process practically applicable in textile wastewater treatment. Additionally, the synthesized LS-Ag NPs displayed significant free radical scavenging against 2-diphenyl-1-picrylhydrazyl (DPPH) with an IC50 value of (50.2 ± 0.70 µg/mL) and also exhibited antidiabetic activity in terms of inhibition in the activity of carbohydrate-degrading marker enzyme α-glucosidase with an IC50 value of (58.1 ± 0.65 µg/mL). LS-Ag NPs showed substantial antibacterial potential against pathogenic strains, namely E. coli and S. aureus. In conclusion, LS-Ag NPs can be a reliable and eco-friendly material for their possible application in the treatment of dye-containing wastewater and have a great perspective in the biomedical and pharmaceutical sectors.

18.
J Basic Microbiol ; 62(9): 1083-1097, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34913513

RESUMO

Elevated demand and extensive exploitation of cosmetics in day-to-day life have hiked up its industrial productions worldwide. Organic and inorganic chemicals like parabens, phthalates, sulfates, and so forth are being applied as constituents towards the formulations, which tend to be the mainspring ecological complication due to their enduring nature and accumulation properties in various sections of the ecosystem. These cosmetic chemicals get accrued into the terrestrial and aquatic systems on account of various anthropogenic activities involving agricultural runoff, industrial discharge, and domestic effluents. Recently, the use of microbes for remediating persistent cosmetic chemicals has gained immense interest. Among different forms of the microbial community being applied as an environmental beneficiary, algae play a vital role in both terrestrial and aquatic ecosystems by their biologically beneficial metabolites and molecules, resulting in the biobenign and efficacious consequences. The use of various bacterial, fungal, and higher plant species has been studied intensely for their bioremediation elements. The bioremediating property of the algal cells through biosorption, bioassimilation, biotransformation, and biodegradation has made it favorable for the removal of persistent and toxic pollutants from the environment. However, the research investigation concerned with the bioremediation potential of the algal kingdom is limited. This review summarizes and provides updated and comprehensive insights into the potential remediation capabilities of algal species against ecologically hazardous pollutants concerning cosmetic chemicals.


Assuntos
Cosméticos , Poluentes Ambientais , Biodegradação Ambiental , Ecossistema , Poluentes Ambientais/metabolismo , Plantas/metabolismo
19.
Polymers (Basel) ; 13(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960848

RESUMO

Global energy consumption has been increasing in tandem with economic growth motivating researchers to focus on renewable energy sources. Dark fermentative hydrogen synthesis utilizing various biomass resources is a promising, less costly, and less energy-intensive bioprocess relative to other biohydrogen production routes. The generated acidogenic dark fermentative effluent [e.g., volatile fatty acids (VFAs)] has potential as a reliable and sustainable carbon substrate for polyhydroxyalkanoate (PHA) synthesis. PHA, an important alternative to petrochemical based polymers has attracted interest recently, owing to its biodegradability and biocompatibility. This review illustrates methods for the conversion of acidogenic effluents (VFAs), such as acetate, butyrate, propionate, lactate, valerate, and mixtures of VFAs, into the value-added compound PHA. In addition, the review provides a comprehensive update on research progress of VFAs to PHA conversion and related enhancement techniques including optimization of operational parameters, fermentation strategies, and genetic engineering approaches. Finally, potential bottlenecks and future directions for the conversion of VFAs to PHA are outlined. This review offers insights to researchers on an integrated biorefinery route for sustainable and cost-effective bioplastics production.

20.
3 Biotech ; 11(8): 383, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34350088

RESUMO

In this study, a cell wall-associated extracellular electron transfer (EET) was determined in the thermophilic Geobacillus sp. to utilize iron as a terminal electron acceptor. The direct extracellular transfer of its electrons was primarily linked to the cell wall cytochrome-c and diffusible redox mediators like flavins during the anoxic condition. Based on the azo dye decolouration and protein film voltammetry, it was revealed that, in the absence of surface polysaccharide and diffusible mediators, the cell wall-associated EET pathway was likely to be a favorable mechanism in Geobacillus sp. Since the permeability of such redox molecule is primarily limited to the cell wall, the electron transfer occurs by direct contact with cell wall-associated cytochrome and final electron acceptor. Furthermore, transfer of electrons with the help of redox shuttling molecules like riboflavin from cytochrome to cells, vice versa indicates that Geoabcillus sp. has adopted this unique pathway during an anoxic environment for its respiration. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02917-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...