Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Am J Hum Genet ; 111(4): 778-790, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38531365

RESUMO

Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Animais , Criança , Humanos , Deficiências do Desenvolvimento/genética , Éxons , Deficiência Intelectual/genética , Mamíferos/genética , Hipotonia Muscular/genética , Anormalidades Musculoesqueléticas/genética , Neuroblastoma/genética , Transtornos do Neurodesenvolvimento/genética , Espécies Reativas de Oxigênio
3.
medRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38293138

RESUMO

Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.

4.
Proc Natl Acad Sci U S A ; 120(21): e2302584120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186866

RESUMO

Mutations in the TMEM260 gene cause structural heart defects and renal anomalies syndrome, but the function of the encoded protein remains unknown. We previously reported wide occurrence of O-mannose glycans on extracellular immunoglobulin, plexin, transcription factor (IPT) domains found in the hepatocyte growth factor receptor (cMET), macrophage-stimulating protein receptor (RON), and plexin receptors, and further demonstrated that two known protein O-mannosylation systems orchestrated by the POMT1/2 and transmembrane and tetratricopeptide repeat-containing proteins 1-4 gene families were not required for glycosylation of these IPT domains. Here, we report that the TMEM260 gene encodes an ER-located protein O-mannosyltransferase that selectively glycosylates IPT domains. We demonstrate that disease-causing TMEM260 mutations impair O-mannosylation of IPT domains and that TMEM260 knockout in cells results in receptor maturation defects and abnormal growth of 3D cell models. Thus, our study identifies the third protein-specific O-mannosylation pathway in mammals and demonstrates that O-mannosylation of IPT domains serves critical functions during epithelial morphogenesis. Our findings add a new glycosylation pathway and gene to a growing group of congenital disorders of glycosylation.


Assuntos
Manose , Manosiltransferases , Animais , Glicosilação , Mamíferos/metabolismo , Manose/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo
6.
Genet Med ; 25(4): 100003, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36549593

RESUMO

PURPOSE: Transformer2 proteins (Tra2α and Tra2ß) control splicing patterns in human cells, and no human phenotypes have been associated with germline variants in these genes. The aim of this work was to associate germline variants in the TRA2B gene to a novel neurodevelopmental disorder. METHODS: A total of 12 individuals from 11 unrelated families who harbored predicted loss-of-function monoallelic variants, mostly de novo, were recruited. RNA sequencing and western blot analyses of Tra2ß-1 and Tra2ß-3 isoforms from patient-derived cells were performed. Tra2ß1-GFP, Tra2ß3-GFP and CHEK1 exon 3 plasmids were transfected into HEK-293 cells. RESULTS: All variants clustered in the 5' part of TRA2B, upstream of an alternative translation start site responsible for the expression of the noncanonical Tra2ß-3 isoform. All affected individuals presented intellectual disability and/or developmental delay, frequently associated with infantile spasms, microcephaly, brain anomalies, autism spectrum disorder, feeding difficulties, and short stature. Experimental studies showed that these variants decreased the expression of the canonical Tra2ß-1 isoform, whereas they increased the expression of the Tra2ß-3 isoform, which is shorter and lacks the N-terminal RS1 domain. Increased expression of Tra2ß-3-GFP were shown to interfere with the incorporation of CHEK1 exon 3 into its mature transcript, normally incorporated by Tra2ß-1. CONCLUSION: Predicted loss-of-function variants clustered in the 5' portion of TRA2B cause a new neurodevelopmental syndrome through an apparently dominant negative disease mechanism involving the use of an alternative translation start site and the overexpression of a shorter, repressive Tra2ß protein.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Processamento Alternativo , Proteínas de Ligação a RNA/genética , Células HEK293 , Isoformas de Proteínas/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
7.
Am J Hum Genet ; 110(1): 120-145, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528028

RESUMO

Eukaryotic initiation factor-4A2 (EIF4A2) is an ATP-dependent RNA helicase and a member of the DEAD-box protein family that recognizes the 5' cap structure of mRNAs, allows mRNA to bind to the ribosome, and plays an important role in microRNA-regulated gene repression. Here, we report on 15 individuals from 14 families presenting with global developmental delay, intellectual disability, hypotonia, epilepsy, and structural brain anomalies, all of whom have extremely rare de novo mono-allelic or inherited bi-allelic variants in EIF4A2. Neurodegeneration was predominantly reported in individuals with bi-allelic variants. Molecular modeling predicts these variants would perturb structural interactions in key protein domains. To determine the pathogenicity of the EIF4A2 variants in vivo, we examined the mono-allelic variants in Drosophila melanogaster (fruit fly) and identified variant-specific behavioral and developmental defects. The fruit fly homolog of EIF4A2 is eIF4A, a negative regulator of decapentaplegic (dpp) signaling that regulates embryo patterning, eye and wing morphogenesis, and stem cell identity determination. Our loss-of-function (LOF) rescue assay demonstrated a pupal lethality phenotype induced by loss of eIF4A, which was fully rescued with human EIF4A2 wild-type (WT) cDNA expression. In comparison, the EIF4A2 variant cDNAs failed or incompletely rescued the lethality. Overall, our findings reveal that EIF4A2 variants cause a genetic neurodevelopmental syndrome with both LOF and gain of function as underlying mechanisms.


Assuntos
Proteínas de Drosophila , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Epilepsia/genética , Fator de Iniciação 4A em Eucariotos/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
medRxiv ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38234782

RESUMO

Autism Spectrum Disorder (ASD) exhibits an ~4:1 male-to-female sex bias and is characterized by early-onset impairment of social/communication skills, restricted interests, and stereotyped behaviors. Disruption of the Xp22.11 locus has been associated with ASD in males. This locus includes the three-exon PTCHD1 gene, an adjacent multi-isoform long noncoding RNA (lncRNA) named PTCHD1-AS (spanning ~1Mb), and a poorly characterized single-exon RNA helicase named DDX53 that is intronic to PTCHD1-AS. While the relationship between PTCHD1/PTCHD1-AS and ASD is being studied, the role of DDX53 has not been examined, in part because there is no apparent functional murine orthologue. Through clinical testing, here, we identified 6 males and 1 female with ASD from 6 unrelated families carrying rare, predicted-damaging or loss-of-function variants in DDX53. Then, we examined databases, including the Autism Speaks MSSNG and Simons Foundation Autism Research Initiative, as well as population controls. We identified 24 additional individuals with ASD harboring rare, damaging DDX53 variations, including the same variants detected in two families from the original clinical analysis. In this extended cohort of 31 participants with ASD (28 male, 3 female), we identified 25 mostly maternally-inherited variations in DDX53, including 18 missense changes, 2 truncating variants, 2 in-frame variants, 2 deletions in the 3' UTR and 1 copy number deletion. Our findings in humans support a direct link between DDX53 and ASD, which will be important in clinical genetic testing. These same autism-related findings, coupled with the observation that a functional orthologous gene is not found in mouse, may also influence the design and interpretation of murine-modelling of ASD.

9.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916866

RESUMO

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Domínios Proteicos , Sequenciamento do Exoma
11.
Brain ; 145(3): 909-924, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34605855

RESUMO

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.


Assuntos
Epilepsia Generalizada , Trocador de Sódio e Cálcio , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Glutamina/metabolismo , Histidina/metabolismo , Humanos , Metaboloma , Nitrogênio/metabolismo , Trocador de Sódio e Cálcio/genética
12.
Hum Mutat ; 43(2): 266-282, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859529

RESUMO

De novo variants in QRICH1 (Glutamine-rich protein 1) has recently been reported in 11 individuals with intellectual disability (ID). The function of QRICH1 is largely unknown but it is likely to play a key role in the unfolded response of endoplasmic reticulum stress through transcriptional control of proteostasis. In this study, we present 27 additional individuals and delineate the clinical and molecular spectrum of the individuals (n = 38) with QRICH1 variants. The main clinical features were mild to moderate developmental delay/ID (71%), nonspecific facial dysmorphism (92%) and hypotonia (39%). Additional findings included poor weight gain (29%), short stature (29%), autism spectrum disorder (29%), seizures (24%) and scoliosis (18%). Minor structural brain abnormalities were reported in 52% of the individuals with brain imaging. Truncating or splice variants were found in 28 individuals and 10 had missense variants. Four variants were inherited from mildly affected parents. This study confirms that heterozygous QRICH1 variants cause a neurodevelopmental disorder including short stature and expands the phenotypic spectrum to include poor weight gain, scoliosis, hypotonia, minor structural brain anomalies, and seizures. Inherited variants from mildly affected parents are reported for the first time, suggesting variable expressivity.


Assuntos
Transtorno do Espectro Autista , Nanismo , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Escoliose , Transtorno do Espectro Autista/genética , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular , Transtornos do Neurodesenvolvimento/genética , Convulsões , Aumento de Peso
13.
Nat Commun ; 12(1): 4680, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344887

RESUMO

Craniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10-10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases.


Assuntos
Síndrome de Goldenhar/genética , Haploinsuficiência , Fatores de Processamento de RNA/genética , Adolescente , Adulto , Animais , Criança , Exoma/genética , Feminino , Estudos de Associação Genética , Síndrome de Goldenhar/patologia , Humanos , Lactente , Masculino , Mutação , Crista Neural/crescimento & desenvolvimento , Crista Neural/patologia , Linhagem , Spliceossomos/genética , Xenopus laevis
14.
Brain Sci ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356165

RESUMO

In humans, de novo truncating variants in WASF1 (Wiskott-Aldrich syndrome protein family member 1) have been linked to presentations of moderate-to-profound intellectual disability (ID), autistic features, and epilepsy. Apart from one case series, there is limited information on the phenotypic spectrum and genetic landscape of WASF1-related neurodevelopmental disorder (NDD). In this report, we describe detailed clinical characteristics of six individuals with WASF1-related NDD. We demonstrate a broader spectrum of neurodevelopmental impairment including more mildly affected individuals. Further, we report new variant types, including a copy number variant (CNV), resulting in the partial deletion of WASF1 in monozygotic twins, and three missense variants, two of which alter the same residue, p.W161. This report adds further evidence that de novo variants in WASF1 cause an autosomal dominant NDD.

15.
Sci Rep ; 11(1): 11295, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050248

RESUMO

MBD5-associated neurodevelopmental disorder (MAND) is an autism spectrum disorder (ASD) characterized by intellectual disability, motor delay, speech impairment and behavioral problems; however, the biological role of methyl-CpG-binding domain 5, MBD5, in neurodevelopment and ASD remains largely undefined. Hence, we created neural progenitor cells (NPC) derived from individuals with chromosome 2q23.1 deletion and conducted RNA-seq to identify differentially expressed genes (DEGs) and the biological processes and pathways altered in MAND. Primary skin fibroblasts from three unrelated individuals with MAND and four unrelated controls were converted into induced pluripotent stem cell (iPSC) lines, followed by directed differentiation of iPSC to NPC. Transcriptome analysis of MAND NPC revealed 468 DEGs (q < 0.05), including 20 ASD-associated genes. Comparison of DEGs in MAND with SFARI syndromic autism genes revealed a striking significant overlap in biological processes commonly altered in neurodevelopmental phenotypes, with TGFß, Hippo signaling, DNA replication, and cell cycle among the top enriched pathways. Overall, these transcriptome deviations provide potential connections to the overlapping neurocognitive and neuropsychiatric phenotypes associated with key high-risk ASD genes, including chromatin modifiers and epigenetic modulators, that play significant roles in these disease states.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Diferenciação Celular/genética , Deleção Cromossômica , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 2/metabolismo , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Células-Tronco Neurais/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo , Cultura Primária de Células , RNA-Seq , Transdução de Sinais/genética , Transcriptoma/genética
16.
Orphanet J Rare Dis ; 16(1): 136, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736665

RESUMO

BACKGROUND: An identical homozygous missense variant in EIF3F, identified through a large-scale genome-wide sequencing approach, was reported as causative in nine individuals with a neurodevelopmental disorder, characterized by variable intellectual disability, epilepsy, behavioral problems and sensorineural hearing-loss. To refine the phenotypic and molecular spectrum of EIF3F-related neurodevelopmental disorder, we examined independent patients. RESULTS: 21 patients were homozygous and one compound heterozygous for c.694T>G/p.(Phe232Val) in EIF3F. Haplotype analyses in 15 families suggested that c.694T>G/p.(Phe232Val) was a founder variant. All affected individuals had developmental delays including delayed speech development. About half of the affected individuals had behavioral problems, altered muscular tone, hearing loss, and short stature. Moreover, this study suggests that microcephaly, reduced sensitivity to pain, cleft lip/palate, gastrointestinal symptoms and ophthalmological symptoms are part of the phenotypic spectrum. Minor dysmorphic features were observed, although neither the individuals' facial nor general appearance were obviously distinctive. Symptoms in the compound heterozygous individual with an additional truncating variant were at the severe end of the spectrum in regard to motor milestones, speech delay, organic problems and pre- and postnatal growth of body and head, suggesting some genotype-phenotype correlation. CONCLUSIONS: Our study refines the phenotypic and expands the molecular spectrum of EIF3F-related syndromic neurodevelopmental disorder.


Assuntos
Fenda Labial , Fissura Palatina , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Fator de Iniciação 3 em Eucariotos , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética
17.
Mol Genet Genomic Med ; 7(2): e00501, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30447054

RESUMO

BACKGROUND: The cohesin complex is a multi-subunit protein complex which regulates sister chromatid cohesion and separation during cellular division. In addition, this evolutionarily conserved protein complex plays an integral role in DNA replication, DNA repair, and the regulation of transcription. The core complex is composed of four subunits: RAD21, SMC1A, SMC3, and STAG1/2. Mutations in these proteins have been implicated in human developmental disorders collectively termed "cohesinopathies." METHODS: Using clinical exome sequencing, we have previously identified three female cases with heterozygous STAG2 mutations and overlapping syndromic phenotypes. Subsequently, a familial missense variant was identified in five male family members. RESULTS: We now present the case of a 4-year-old male with developmental delay, failure to thrive, short stature, and polydactyly with a likely pathogenic STAG2 de novo missense hemizygous variant, c.3027A>T, p.Lys1009Asn. Furthermore, we compare the phenotypes of the four previously reported STAG2 variants with our case. CONCLUSION: We conclude that mutations in STAG2 cause a novel constellation of sex-specific cohesinopathy-related phenotypes and are furthermore, essential for neurodevelopment, human growth, and behavioral development.


Assuntos
Antígenos Nucleares/genética , Deficiências do Desenvolvimento/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Transtornos do Crescimento/genética , Fenótipo , Polidactilia/genética , Proteínas de Ciclo Celular , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Transtornos do Crescimento/patologia , Humanos , Masculino , Mutação de Sentido Incorreto , Polidactilia/patologia , Síndrome
18.
Methods Mol Biol ; 1897: 359-383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30539458

RESUMO

Nucleic acid isolation is often the starting point for all downstream experiments in biomedical research. It is therefore the most crucial step in any molecular technique. DNA and RNA extraction follow protocols with standardized reagents, many of which are available in quality-controlled commercial kits. Irrespective of the protocol, successful extraction of high-quality nucleic acid from biological tissues requires sufficient disruption of the tissue and cellular structures, denaturation of nucleoprotein complexes, inactivation of nucleases, and nucleic acid purification. These steps can be modified based on nucleic acid of interest and biological sample source. This chapter addresses DNA and RNA extraction from a variety of sample and tissue types, including saliva, and formalin-fixed, paraffin-embedded tissues, which are often archived in clinical pathology laboratories. Special considerations and common pitfalls of each protocol will also be discussed, as will nucleic acid quantitation techniques.


Assuntos
Bancos de Espécimes Biológicos/tendências , Ácidos Nucleicos/isolamento & purificação , Manejo de Espécimes/métodos , DNA/genética , DNA/isolamento & purificação , Humanos , Ácidos Nucleicos/química , Inclusão em Parafina , RNA/genética , RNA/isolamento & purificação , Fixação de Tecidos
19.
Hum Mutat ; 38(12): 1774-1785, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28940898

RESUMO

Deformed epidermal autoregulatory factor-1 (DEAF1), a transcription factor essential for central nervous system and early embryonic development, has recently been implicated in a series of intellectual disability-related neurodevelopmental anomalies termed, in this study, as DEAF1-associated neurodevelopmental disorder (DAND). We identified six potentially deleterious DEAF1 variants in a cohort of individuals with DAND via clinical exome sequencing (CES) and in silico analysis, including two novel de novo variants: missense variant c.634G > A p.Gly212Ser in the SAND domain and deletion variant c.913_915del p.Lys305del in the NLS domain, as well as c.676C > T p.Arg226Trp, c.700T > A p.Trp234Arg, c.737G > C p.Arg246Thr, and c.791A > C p.Gln264Pro. Luciferase reporter, immunofluorescence staining, and electrophoretic mobility shift assays revealed that these variants had decreased transcriptional repression activity at the DEAF1 promoter and reduced affinity to consensus DEAF1 DNA binding sequences. In addition, c.913_915del p.K305del localized primarily to the cytoplasm and interacted with wild-type DEAF1. Our results demonstrate that variants located within the SAND or NLS domains significantly reduce DEAF1 transcriptional regulatory activities and are thus, likely to contribute to the underlying clinical concerns in DAND patients. These findings illustrate the importance of experimental characterization of variants with uncertain significance identified by CES to assess their potential clinical significance and possible use in diagnosis.


Assuntos
Exoma/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Nucleares/genética , Sequência de Aminoácidos , Estudos de Coortes , Proteínas de Ligação a DNA , Humanos , Mutação , Proteínas Nucleares/metabolismo , Fenótipo , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...