Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Haptics ; 13(3): 522-529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149656

RESUMO

With the commercialization of haptic devices, understanding behavior under various environmental conditions is crucial for product optimization and cost reduction. Specifically, for surface haptic devices, the dependence of the friction force and the electroadhesion effect on the environmental relative humidity and the finger hydration level can directly impact their design and performance. This article presents the influence of relative humidity on the finger-surface friction force and the electroadhesion performance. Mechanisms including changes to Young's modulus of skin, contact angle change and capillary force were analyzed separately with experimental and numerical methods. Through comparison of the calculated capillary force in this paper and the electroadhesion force calculated in published papers, it was found that electrowetting at high voltage could contribute up to 60% of the total friction force increase in electroadhesion. Therefore, in future design of surface haptic devices, the effect of electrowetting should be considered carefully.


Assuntos
Eletroumectação , Dedos , Fenômenos Físicos , Tato , Interface Usuário-Computador , Fricção , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...