Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35624710

RESUMO

The development and use of nanomaterials, especially of nickel oxide nanoparticles (NiONPs), is expected to provide many benefits but also has raised concerns about the potential human health risks. Inhaled NPs are known to exert deleterious cardiovascular side effects, including pulmonary hypertension. Consequently, patients with pulmonary hypertension (PH) could be at increased risk for morbidity. The objective of this study was to compare the toxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC) under physiological and pathological conditions. The study was conducted with an in vitro model mimicking the endothelial dysfunction observed in PH. HPAEC were cultured under physiological (static and normoxic) or pathological (20% cycle stretch and hypoxia) conditions and exposed to NiONPs (0.5-5 µg/cm2) for 4 or 24 h. The following endpoints were studied: (i) ROS production using CM-H2DCF-DA and MitoSOX probes, (ii) nitrite production by the Griess reaction, (iii) IL-6 secretion by ELISA, (iv) calcium signaling with a Fluo-4 AM probe, and (v) mitochondrial dysfunction with TMRM and MitoTracker probes. Our results evidenced that under pathological conditions, ROS and nitrite production, IL-6 secretions, calcium signaling, and mitochondria alterations increased compared to physiological conditions. Human exposure to NiONPs may be associated with adverse effects in vulnerable populations with cardiovascular risks.

2.
Nanotoxicology ; 16(1): 29-51, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35090355

RESUMO

In New Caledonia, anthropic activities, such as mining, increase the natural erosion of soils in nickel mines, which in turn, releases nickel oxide nanoparticles (NiONPs) into the atmosphere. Pulmonary vascular endothelial cells represent one of the primary targets for inhaled nanoparticles. The objective of this in vitro study was to assess the cytotoxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC). Special attention will be given to the level of oxidative stress and calcium signaling, which are involved in the physiopathology of cardiovascular diseases. HPAEC were exposed to NiONPs (0.5-150 µg/cm2) for 4 or 24 h. The following different endpoints were studied: (i) ROS production using CM-H2DCF-DA probe, electron spin resonance, and MitoSOX probe; the SOD activity was also measured (ii) calcium signaling with Fluo4-AM, Rhod-2, and Fluo4-FF probes; (iii) inflammation by IL-6 production and secretion and, (iv) mitochondrial dysfunction and apoptosis with TMRM and MitoTracker probes, and AnnexinV/PI. Our results have evidenced that NiONPs induced oxidative stress in HPAEC. This was demonstrated by an increase in ROS production and a decrease in SOD activity, the two mechanisms seem to trigger a pro-inflammatory response with IL-6 secretion. In addition, NiONPs exposure altered calcium homeostasis inducing an increased cytosolic calcium concentration ([Ca2+]i) that was significantly reduced by the extracellular calcium chelator EGTA and the TRPV4 inhibitor HC-067047. Interestingly, exposure to NiONPs also altered TRPV4 activity. Finally, HPAEC exposure to NiONPs increased intracellular levels of both ROS and calcium ([Ca2+]m) in mitochondria, leading to mitochondrial dysfunction and HPAEC apoptosis.


Assuntos
Sinalização do Cálcio , Células Endoteliais , Nanopartículas Metálicas , Mitocôndrias , Estresse Oxidativo , Canais de Cátion TRPV , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Nanopartículas Metálicas/efeitos adversos , Mitocôndrias/patologia , Níquel/efeitos adversos , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Canais de Cátion TRPV/metabolismo
3.
Hum Mutat ; 38(11): 1534-1541, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28714244

RESUMO

The genetic basis combined with the sporadic occurrence of amyotrophic lateral sclerosis (ALS) suggests a role of de novo mutations in disease pathogenesis. Previous studies provided some evidence for this hypothesis; however, results were conflicting: no genes with recurrent occurring de novo mutations were identified and different pathways were postulated. In this study, we analyzed whole-exome data from 82 new patient-parents trios and combined it with the datasets of all previously published ALS trios (173 trios in total). The per patient de novo rate was not higher than expected based on the general population (P = 0.40). We showed that these mutations are not part of the previously postulated pathways, and gene-gene interaction analysis found no enrichment of interacting genes in this group (P = 0.57). Also, we were able to show that the de novo mutations in ALS patients are located in genes already prone for de novo mutations (P < 1 × 10-15 ). Although the individual effect of rare de novo mutations in specific genes could not be assessed, our results indicate that, in contrast to previous hypothesis, de novo mutations in general do not impose a major burden on ALS risk.


Assuntos
Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Alelos , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Estudos de Casos e Controles , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Taxa de Mutação , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
4.
Respir Res ; 18(1): 47, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28288643

RESUMO

Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension that combines multiple alterations of pulmonary arteries, including, in particular, thrombotic and plexiform lesions. Multiple-pathological-insult animal models, developed to more closely mimic this human severe PAH form, often require complex and/or long experimental procedures while not displaying the entire panel of characteristic lesions observed in the human disease. In this study, we further characterized a rat model of severe PAH generated by combining a single injection of monocrotaline with 4 weeks exposure to chronic hypoxia. This model displays increased pulmonary arterial pressure, right heart altered function and remodeling, pulmonary arterial inflammation, hyperresponsiveness and remodeling. In particular, severe pulmonary arteriopathy was observed, with thrombotic, neointimal and plexiform-like lesions similar to those observed in human severe PAH. This model, based on the combination of two conventional procedures, may therefore be valuable to further understand the pathophysiology of severe PAH and identify new potential therapeutic targets in this disease.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Hipóxia/fisiopatologia , Artéria Pulmonar/fisiopatologia , Animais , Pressão Arterial , Doença Crônica , Humanos , Masculino , Monocrotalina , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Resistência Vascular/efeitos dos fármacos
5.
PLoS One ; 12(2): e0173044, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28235094

RESUMO

Bronchopulmonary dysplasia (BPD) consists of an arrest of pulmonary vascular and alveolar growth, with persistent hypoplasia of the pulmonary microvasculature and alveolar simplification. In 25 to 40% of the cases, BPD is complicated by pulmonary hypertension (BPD-PH) that significantly increases the risk of morbidity. In vivo studies suggest that increased pulmonary vascular tone could contribute to late PH in BPD. Nevertheless, an alteration in vasoreactivity as well as the mechanisms involved remain to be confirmed. The purpose of this study was thus to assess changes in pulmonary vascular reactivity in a murine model of BPD-PH. Newborn Wistar rats were exposed to either room air (normoxia) or 90% O2 (hyperoxia) for 14 days. Exposure to hyperoxia induced the well-known features of BPD-PH such as elevated right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling and decreased pulmonary vascular density. Intrapulmonary arteries from hyperoxic pups showed decreased endothelium-dependent relaxation to acetylcholine without any alteration of relaxation to the NO-donor sodium nitroprusside. This functional alteration was associated with a decrease of lung eNOS phosphorylation at the Ser1177 activating site. In pups exposed to hyperoxia, serotonin and phenylephrine induced exacerbated contractile responses of intrapulmonary arteries as well as intracellular calcium response in pulmonary arterial smooth muscle cells (PASMC). Moreover, the amplitude of the store-operated Ca2+ entry (SOCE), induced by store depletion using a SERCA inhibitor, was significantly greater in PASMC from hyperoxic pups. Altogether, hyperoxia-induced BPD-PH alters the pulmonary arterial reactivity, with effects on both endothelial and smooth muscle functions. Reduced activating eNOS phosphorylation and enhanced Ca2+ signaling likely account for alterations of pulmonary arterial reactivity.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Sinalização do Cálcio , Hipertensão Pulmonar/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Processamento de Proteína Pós-Traducional , Acetilcolina/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Hiperóxia/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/enzimologia , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Fosforilação , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Wistar , Vasodilatação , Vasodilatadores/farmacologia
6.
Toxicology ; 375: 37-47, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27939335

RESUMO

The development and use of nanomaterials, especially engineered nanoparticles (NP), is expected to provide many benefits. But at the same time the development of such materials is also feared because of their potential human health risks. Indeed, NP display some characteristics similar to ultrafine environmental particles which are known to exert deleterious cardiovascular effects including pro-hypertensive ones. In this context, the effect of NP on calcium signalling, whose deregulation is often involved in hypertensive diseases, remain poorly described. We thus assessed the effect of SiO2 NP on calcium signalling by fluorescence imaging and on the proliferation response in rat pulmonary artery smooth muscle cells (PASMC). In PASMC, acute exposure to SiO2 NP, from 1 to 500µg/mL, produced an increase of the [Ca2+]i. In addition, when PASMC were exposed to NP at 200µg/mL, a proliferative response was observed. This calcium increase was even greater in PASMC isolated from rats suffering from pulmonary hypertension. The absence of extracellular calcium, addition of diltiazem or nicardipine (L-type voltage-operated calcium channel inhibitors both used at 10µM), and addition of capsazepine or HC067047 (TRPV1 and TRPV4 inhibitors used at 10µM and 5µM, respectively) significantly reduced this response. Moreover, this response was also inhibited by thapsigargin (SERCA inhibitor, 1µM), ryanodine (100µM) and dantrolene (ryanodine receptor antagonists, 10µM) but not by xestospongin C (IP3 receptor antagonist, 10µM). Thus, NP induce an intracellular calcium rise in rat PASMC originating from both extracellular and intracellular calcium sources. This study also provides evidence for the implication of TRPV channels in NP induced calcium rise that may highlight the role of these channels in the deleterious cardiovascular effects of NP.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Nanopartículas/toxicidade , Artéria Pulmonar/efeitos dos fármacos , Dióxido de Silício/toxicidade , Animais , Sinalização do Cálcio/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Miócitos de Músculo Liso/fisiologia , Artéria Pulmonar/fisiologia , Ratos , Ratos Wistar
7.
Pharmacol Ther ; 164: 105-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27126473

RESUMO

Connexins are transmembrane proteins that can generate intercellular communication channels known as gap junctions. They contribute to the direct movement of ions and larger cytoplasmic solutes between various cell types. In the lung, connexins participate in a variety of physiological functions, such as tissue homeostasis and host defence. In addition, emerging evidence supports a role for connexins in various pulmonary inflammatory diseases, such as asthma, pulmonary hypertension, acute lung injury, lung fibrosis or cystic fibrosis. In these diseases, the altered expression of connexins leads to disruption of normal intercellular communication pathways, thus contributing to various pathophysiological aspects, such as inflammation or tissue altered reactivity and remodeling. The present review describes connexin structure and organization in gap junctions. It focuses on connexins in the lung, including pulmonary bronchial and arterial beds, by looking at their expression, regulation and physiological functions. This work also addresses the issue of connexin expression alteration in various pulmonary inflammatory diseases and describes how targeting connexin-based gap junctions with pharmacological tools, synthetic blocking peptides or genetic approaches, may open new therapeutic perspectives in the treatment of these diseases.


Assuntos
Conexinas/efeitos dos fármacos , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Pneumopatias/fisiopatologia , Animais , Comunicação Celular/fisiologia , Modelos Animais de Doenças , Ácido Glicirretínico/farmacologia , Humanos , Inflamação/fisiopatologia , Pulmão/fisiopatologia , Fosforilação/fisiologia , Artéria Pulmonar/fisiopatologia , Fibrose Pulmonar/fisiopatologia
8.
Toxicol In Vitro ; 32: 205-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780163

RESUMO

Particulate air pollution exerts deleterious effects on cardiovascular system. We previously described that exposure to urban particulate matter (SRM1648) impairs nitric oxide (NO, a major vasculoprotective factor) responsiveness in intrapulmonary arteries. As Heme Oxygenase-1 (HO-1) is induced by urban particles in some cell types and is known to alter NO-dependent signaling pathway, the objective was to characterize HO-1 involvement in SRM1648-induced impairment of NO-dependent relaxation in intrapulmonary arteries. Rat intrapulmonary artery rings were exposed or not to Co (III) Protoporphyrin IX Chloride (HO-1 inducer) or SRM1648 in the absence or presence of Cr (III) Mesoporphyrin IX Chloride (HO-1 activity inhibitor). NO-dependent relaxation was assessed with DEA-NOnoate (DEA-NO) on pre-contracted arteries. HO-1 and soluble guanylyl-cyclase (sGC) mRNA and protein expressions were assessed by qRT-PCR and Western blotting, respectively. SRM1648 or Co (III) Protoporphyrin IX Chloride exposure (24) impaired DEA-NO-dependent relaxation. The SRM-induced alteration of DEA-NO responsiveness was partially prevented by Cr (III) Mesoporphyrin IX Chloride. Co (III) Protoporphyrin IX Chloride induced HO-1 mRNA and protein expressions, whereas SRM1648 only induced HO-1 protein expression without affecting its mRNA level. Exposure to either SRM1648 or to Co (III) Protoporphyrin IX Chloride did not affect the expression levels of sGC. In conclusion, this study provides some evidence that impairment of NO signaling pathway in intrapulmonary arteries involves HO-1. Therefore it highlights the role of HO-1 in particulate matter-induced detrimental effects in pulmonary circulation.


Assuntos
Poluentes Atmosféricos/toxicidade , Heme Oxigenase (Desciclizante)/fisiologia , Óxido Nítrico/fisiologia , Material Particulado/toxicidade , Artéria Pulmonar/efeitos dos fármacos , Animais , Heme Oxigenase (Desciclizante)/metabolismo , Técnicas In Vitro , Masculino , Protoporfirinas/farmacologia , Artéria Pulmonar/fisiologia , Ratos Wistar , Vasodilatação
9.
Am J Respir Crit Care Med ; 192(3): 342-55, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26039706

RESUMO

RATIONALE: Pulmonary hypertension (PH) is characterized by a progressive elevation in mean pulmonary arterial pressure, often leading to right ventricular failure and death. Growth factors play significant roles in the pathogenesis of PH, and their targeting may therefore offer novel therapeutic strategies in this disease. OBJECTIVES: To evaluate the nerve growth factor (NGF) as a potential new target in PH. METHODS: Expression and/or activation of NGF and its receptors were evaluated in rat experimental PH induced by chronic hypoxia or monocrotaline and in human PH (idiopathic or associated with chronic obstructive pulmonary disease). Effects of exogenous NGF were evaluated ex vivo on pulmonary arterial inflammation and contraction, and in vitro on pulmonary vascular cell proliferation, migration, and cytokine secretion. Effects of NGF inhibition were evaluated in vivo with anti-NGF blocking antibodies administered both in rat chronic hypoxia- and monocrotaline-induced PH. MEASUREMENTS AND MAIN RESULTS: Our results show increased expression of NGF and/or increased expression/activation of its receptors in experimental and human PH. Ex vivo/in vitro, we found out that NGF promotes pulmonary vascular cell proliferation and migration, pulmonary arterial hyperreactivity, and secretion of proinflammatory cytokines. In vivo, we demonstrated that anti-NGF blocking antibodies prevent and reverse PH in rats through significant reduction of pulmonary arterial inflammation, hyperreactivity, and remodeling. CONCLUSIONS: This study highlights the critical role of NGF in PH. Because of the recent development of anti-NGF blocking antibodies as a possible new pain treatment, such a therapeutic strategy of NGF inhibition may be of interest in PH.


Assuntos
Hipertensão Pulmonar/metabolismo , Fator de Crescimento Neural/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Ratos , Ratos Wistar
10.
J Pharmacol Sci ; 125(4): 422-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25141925

RESUMO

Septic shock and associated vascular hyporeactivity to vasoconstrictor agonists remain a major problem of critical care medicine. Here we report that glycyrrhetinic acid (GA), the active component of licorice, effectively restores vascular contractility in the model of lipopolysaccharide (LPS)-treated rat aorta. GA was as effective as the NO synthase inhibitor N(G)-nitroarginine methylester. GA did not affect the vascular NO levels (measured by EPR spin trapping) and relaxations to L-arginine in LPS-treated rings as well as relaxation to S-nitroso-N-acetylpenicillamine in control rings. Thus, GA may represent an interesting alternative to NO synthase inhibitors in sepsis-associated vascular dysfunction.


Assuntos
Aorta/efeitos dos fármacos , Inibidores Enzimáticos , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Lipopolissacarídeos/efeitos adversos , Norepinefrina/antagonistas & inibidores , Norepinefrina/farmacologia , Fitoterapia , Choque Séptico/tratamento farmacológico , Choque Séptico/etiologia , Vasoconstrição/efeitos dos fármacos , Animais , Ácido Glicirretínico/isolamento & purificação , Glycyrrhiza/química , Masculino , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos Wistar
11.
Int J Biochem Cell Biol ; 55: 93-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25149415

RESUMO

Mitochondria are essential cell organelles responsible for ATP production in the presence of oxygen. In the pulmonary vasculature, mitochondria contribute to physiological intracellular signalling pathways through production of reactive oxygen species and play the role of oxygen sensors that coordinate hypoxic pulmonary vasoconstriction. Mitochondria also play a pathophysiological role in pulmonary hypertension (PH). This disease is characterized by increased pulmonary arterial pressure and remodelling of pulmonary arteries, leading to increased pulmonary vascular resistance, hypertrophy of the right ventricle, right heart failure and ultimately death. Mitochondrial alterations have been evidenced in PH in pulmonary arteries and in the right ventricle, in particular a chronic shift in energy production from mitochondrial oxidative phosphorylation to glycolysis. This shift, initially described in cancer cells, may play a central role in PH pathogenesis. Further studies of these metabolic mitochondrial alterations in PH may therefore open new therapeutic perspectives in this disease.


Assuntos
Glicólise , Mitocôndrias/metabolismo , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Hipertrofia Ventricular Direita/metabolismo , Modelos Biológicos , Oxirredução , Fosforilação Oxidativa
12.
J Appl Toxicol ; 34(6): 667-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23881823

RESUMO

We have previously shown that exposure to urban particulate matter (UPM) impairs endothelial nitric oxide (NO) bioactivity in intrapulmonary arteries. As UPM is composed of heterogeneous constituents, the aim of this study was to clarify the class of pollutants responsible for such effect. Extracts (aqueous, acidic or organic) were prepared from SRM1648, an UPM sample collected in St. Louis (MO, USA). The metal composition of extracts as well as endotoxin content was determined. The effects of each extract, metal mixture and endotoxin were evaluated on endothelium-dependent relaxation to acetylcholine (reflecting endothelial NO production) in rat isolated intrapulmonary arteries. Aqueous or organic SRM1648 pretreatment altered acetylcholine-induced relaxation, similar to that induced by native SRM1648. Organic extract induced similar attenuation of acetylcholine relaxation than organic-treated SRM1648, whereas aqueous extract had no effect. Acidic pretreatment, which impoverished metal and endotoxin content of SRM1648, prevented the impairment of acetylcholine-induced relaxation. However, neither the acidic extract enriched in metals, nor a metal mixture representative of SRM1648 content, modified acetylcholine relaxation, while endotoxin impaired it. Polymyxin B, which chelates endotoxin, prevented SRM1648-induced decrease in relaxation to acetylcholine. It is concluded that SRM1648-induced impairment of endothelial NO-dependent relaxation in intrapulmonary arteries unlikely involved a soluble factor released by vascular cells during UPM exposure, but rather an organic extractible and acidic-sensitive constituents of UPM. Endotoxin, but not metals, may be responsible for UPM-induced impairment of endothelial NO-dependent relaxation.


Assuntos
Endotoxinas/toxicidade , Metais/toxicidade , Óxido Nítrico/metabolismo , Material Particulado/toxicidade , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Endotoxinas/análise , Masculino , Metais/análise , Material Particulado/análise , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos Wistar , Medição de Risco , Técnicas de Cultura de Tecidos , Vasodilatadores/farmacologia
13.
J Mol Cell Cardiol ; 66: 41-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184261

RESUMO

The development of right heart failure (RHF) is characterized by alterations of right ventricle (RV) structure and function, but the mechanisms of RHF remain still unknown. Thus, understanding the RHF is essential for improved therapies. Therefore, identification by quantitative proteomics of targets specific to RHF may have therapeutic benefits to identify novel potential therapeutic targets. The objective of this study was to analyze the molecular mechanisms changing RV function in the diseased RHF and thus, to identify novel potential therapeutic targets. For this, we have performed differential proteomic analysis of whole RV proteins using two experimental rat models of RHF. Differential protein expression was observed for hundred twenty six RV proteins including proteins involved in structural constituent of cytoskeleton, motor activity, structural molecule activity, cytoskeleton protein binding and microtubule binding. Interestingly, further analysis of down-regulated proteins, reveals that both protein and gene expressions of proteasome subunits were drastically decreased in RHF, which was accompanied by an increase of ubiquitinated proteins. Interestingly, the proteasomal activities chymotrypsin and caspase-like were decreased whereas trypsin-like activity was maintained. In conclusion, this study revealed the involvement of ubiquitin-proteasome system (UPS) in RHF. Three deregulated mechanisms were discovered: (1) decreased gene and protein expressions of proteasome subunits, (2) decreased specific activity of proteasome; and (3) a specific accumulation of ubiquitinated proteins. This modulation of UPS of RV may provide a novel therapeutic avenue for restoration of cardiac function in the diseased RHF.


Assuntos
Insuficiência Cardíaca/genética , Ventrículos do Coração/metabolismo , Hipóxia/genética , Complexo de Endopeptidases do Proteassoma/química , Proteoma/genética , Disfunção Ventricular Direita/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Masculino , Monocrotalina , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteoma/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Ubiquitinação , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
14.
PLoS One ; 8(11): e82594, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312428

RESUMO

Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice.


Assuntos
Biopterinas/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/enzimologia , Camundongos , Óxido Nítrico Sintase Tipo III/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
15.
Ther Adv Respir Dis ; 7(3): 175-200, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23328248

RESUMO

Pulmonary hypertension (PH) is characterized by a progressive elevation of pulmonary arterial pressure due to alterations of both pulmonary vascular structure and function. This disease is rare but life-threatening, leading to the development of right heart failure. Current PH treatments, designed to target altered pulmonary vascular reactivity, include vasodilating prostanoids, phosphodiesterase-5 inhibitors and endothelin-1 receptor antagonists. Although managing to slow the progression of the disease, these molecules still do not cure PH. More effective treatments need to be developed, and novel therapeutic strategies, targeting in particular vascular remodelling, are currently under investigation. Reactive oxygen species (ROS) are important physiological messengers in vascular cells. In addition to atherosclerosis and other systemic vascular diseases, emerging evidence also support a role of ROS in PH pathogenesis. ROS production is increased in animal models of PH, associated with NADPH oxidases increased expression, in particular of several Nox enzymes thought to be the major source of ROS in the pulmonary vasculature. These increases have also been observed in vitro and in vivo in humans. Moreover, several studies have shown either the deleterious effect of agents promoting ROS generation on pulmonary vasculature or, conversely, the beneficial effect of antioxidant agents in animal models of PH. In these studies, ROS production has been directly linked to pulmonary vascular remodelling, endothelial dysfunction, altered vasoconstrictive responses, inflammation and modifications of the extracellular matrix, all important features of PH pathophysiology. Altogether, these findings indicate that ROS are interesting therapeutic targets in PH. Blockade of ROS-dependent signalling pathways, or disruption of sources of ROS in the pulmonary vasculature, targeting in particular Nox enzymes, represent promising new therapeutic strategies in this disease.


Assuntos
Desenho de Fármacos , Hipertensão Pulmonar/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Pressão Arterial/efeitos dos fármacos , Progressão da Doença , Humanos , Hipertensão Pulmonar/fisiopatologia , Terapia de Alvo Molecular , NADPH Oxidases/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Cell Signal ; 23(7): 1136-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21385608

RESUMO

Activation of the ß2-adrenoceptor (ß2-AR) elicits an endothelial nitric oxide synthase (eNOS)-dependent relaxation in mouse pulmonary artery, which, contrary to the muscarinic receptor-dependent relaxation, is preserved in hypoxic pulmonary arterial hypertension. We therefore characterized the signaling pathways underlying the ß2-AR-mediated eNOS activation, with special focus on G(i/o) proteins, protein kinases and caveolae. Functional studies (for evaluation of vasorelaxant response), Western blotting (for assessment of eNOS and caveolin-1 phosphorylation) and transmission electron microscopy (for visualization of caveolae) were conducted in pulmonary arteries from wild-type or caveolin-1 knockout mice. In wild-type isolated arteries, relaxation to the selective ß2-AR agonist procaterol was reduced by inhibitors of G(i/o) proteins (pertussis toxin, PTX), phosphatidylinositol 3-kinase (PI3K; wortmannin or LY 294002), Akt (Akt inhibitor X) and Src-kinase (PP2) and by cholesterol depletion (using methyl-ß-cyclodextrin). Procaterol induced eNOS phosphorylation at Ser(1177), which was prevented by PTX, PP2 or Akt inhibitor. Procaterol also promoted caveolin-1 phosphorylation at Tyr(14), which was decreased by PTX or PP2. Caveolin-1 gene deletion resulted in endothelial caveolae disruption in mouse pulmonary artery and in potentiation of procaterol-induced relaxation. Unlike procaterol, acetylcholine-induced relaxation was unaffected by PTX, methyl-ß-cyclodextrin or caveolin-1 gene deletion. To conclude, the mouse pulmonary endothelial ß2-AR is coupled to a G(i/o)-Src kinase-PI3K/Akt pathway to promote eNOS phosphorylation at Ser(1177) leading to a NO-dependent vasorelaxation. Caveolin-1 exerts a negative control on this response that is abrogated by its phosphorylation at Tyr(14), through a G(i/o)-Src kinase pathway. Since pulmonary ß2-AR- and muscarinic receptor-mediated relaxations differentiate in their respective signaling pathways leading to eNOS activation and sensitivities during hypoxia-induced pulmonary arterial hypertension, mechanisms underlying eNOS activation might be key determinants of pulmonary endothelial dysfunction.


Assuntos
Caveolina 1/metabolismo , Endotélio Vascular/enzimologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Artéria Pulmonar/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Acetilcolina/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Caveolina 1/genética , Dinoprosta/farmacologia , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxina Pertussis/farmacologia , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Procaterol/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Vasodilatadores/farmacologia
17.
Am J Respir Crit Care Med ; 182(2): 261-8, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20339146

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a severe disease characterized by an increase of pulmonary vascular resistance, which is accompanied by functional and structural changes in pulmonary arteries. Microparticles (MPs) have been described as biological vector of endothelial dysfunction in other pathologies. OBJECTIVES: The purpose of this work was to characterize circulating MPs during hypoxic PAH and to study their effects on endothelial function. METHODS: Male Wistar rats were exposed or not to chronic hypoxia, and normoxic or hypoxic MPs from blood were characterized by flow cytometry. Endothelial cells (ECs) from rat aorta or pulmonary arteries were incubated with MPs, and then expression and phosphorylation of enzymes involved in nitric oxide (NO) and reactive oxygen species productions were analyzed. Hypoxic MPs were injected into rats, and endothelium-dependent relaxation was assessed. MEASUREMENTS AND MAIN RESULTS: Circulating levels of MPs from hypoxic rats were twofold higher than those present in normoxic rats. In vitro treatment of ECs with hypoxic MPs reduced NO production in aortas and pulmonary arteries by enhancing phosphorylation of endothelial NO synthase at the inhibitory site. Hypoxic MPs increased oxidative stress only in pulmonary ECs via xanthine oxidase and mitochondrial implication. In vivo injection of hypoxic MPs into rat impaired endothelium-dependent relaxation both in aorta and pulmonary arteries. CONCLUSIONS: These data provide evidence that hypoxic circulating MPs induce endothelial dysfunction in rat aorta and pulmonary arteries by decreasing NO production. Moreover, MPs display tissue specificity with respect to increased oxidative stress, which occurs only in pulmonary ECs.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Células Endoteliais/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão Pulmonar/patologia , Óxido Nítrico Sintase/metabolismo , Superóxidos/metabolismo , Animais , Aorta/metabolismo , Células Cultivadas , Citometria de Fluxo , Hipóxia/fisiopatologia , Masculino , Estresse Oxidativo/fisiologia , Fosforilação , Artéria Pulmonar , Ratos , Ratos Wistar , Vasodilatação/fisiologia
18.
Toxicol Appl Pharmacol ; 245(2): 203-10, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20214918

RESUMO

Pulmonary circulation could be one of the primary vascular targets of finest particles that can deeply penetrate into the lungs after inhalation. We investigated the effects of engineered nanoparticles on vasomotor responses of small intrapulmonary arteries using isometric tension measurements. Acute in vitro exposure to carbon nanoparticles (CNP) decreased, and in some case abolished, the vasomotor responses induced by several vasoactive agents, whereas acute exposure to titanium dioxide nanoparticles (TiO(2)NP) did not. This could be attributed to a decrease in the activity of those vasoactive agents (including PGF(2)(alpha), serotonin, endothelin-1 and acetylcholine), as suggested when they were exposed to CNP before being applied to arteries. Also, CNP decreased the contraction induced by 30 mM KCl, without decreasing its activity. After endoplasmic reticulum calcium stores depletion (by caffeine and thapsigargin), CaCl(2) addition induced a contraction, dependent on Store-Operated Calcium Channels that was not modified by acute CNP exposure. Further addition of 30 mM KCl elicited a contraction, originating from activation of Voltage-Operated Calcium Channels that was diminished by CNP. Contractile responses to PGF(2)(alpha) or KCl, and relaxation to acetylcholine were modified neither in pulmonary arteries exposed in vitro for prolonged time to CNP or TiO(2)NP, nor in those removed from rats intratracheally instilled with CNP or TiO(2)NP. In conclusion, prolonged in vitro or in vivo exposure to CNP or TiO(2)NP does not affect vasomotor responses of pulmonary arteries. However, acute exposure to CNP decreases contraction mediated by activation of Voltage-Operated, but not Store-Operated, Calcium Channels. Moreover, interaction of some vasoactive agents with CNP decreases their biological activity that might lead to misinterpretation of experimental data.


Assuntos
Carbono/farmacologia , Contração Isométrica/efeitos dos fármacos , Nanopartículas , Artéria Pulmonar/efeitos dos fármacos , Titânio/farmacologia , Animais , Canais de Cálcio/fisiologia , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Exposição por Inalação/efeitos adversos , Masculino , Artéria Pulmonar/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
19.
PLoS One ; 5(2): e9306, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20174637

RESUMO

BACKGROUND: Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced by chronic hypoxia (CH) in the higher tolerance to oxygen deprivation. METHODOLOGY/PRINCIPAL FINDINGS: Swiss mice were exposed to a simulated altitude of 5500 m in a barochamber for 21 days. Isolated perfused hearts were used to study the effects of a decreased oxygen concentration in the perfusate on contractile performance (RPP) and phosphocreatine (PCr) concentration (assessed by (31)P-NMR), and to describe the integrated changes in cardiac energetics regulation by using Modular Control Analysis (MoCA). Oxygen reduction induced a concomitant decrease in RPP (-46%) and in [PCr] (-23%) in Control hearts while CH hearts energetics was unchanged. MoCA demonstrated that this adaptation to hypoxia is the direct consequence of the higher responsiveness (elasticity) of ATP production of CH hearts compared with Controls (-1.88+/-0.38 vs -0.89+/-0.41, p<0.01) measured under low oxygen perfusion. This higher elasticity induces an improved response of energy supply to cellular energy demand. The result is the conservation of a healthy control pattern of contraction in CH hearts, whereas Control hearts are severely controlled by energy supply. CONCLUSIONS/SIGNIFICANCE: As suggested by the present study, the mechanisms responsible for this increase in elasticity and the consequent improved ability of CH heart metabolism to respond to oxygen deprivation could participate to limit the damages induced by hypoxia.


Assuntos
Metabolismo Energético/fisiologia , Coração/fisiopatologia , Hipóxia/fisiopatologia , Miocárdio/metabolismo , Animais , Peso Corporal , Doença Crônica , Metabolismo Energético/efeitos dos fármacos , Feminino , Coração/efeitos dos fármacos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Camundongos , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miocárdio/patologia , Tamanho do Órgão , Oxigênio/metabolismo , Oxigênio/farmacologia , Fosfocreatina/metabolismo
20.
Cardiovasc Res ; 85(3): 582-92, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19710084

RESUMO

AIMS: This study investigates the role of the cyclooxygenase (COX)/prostanoid pathway in chronic hypoxia-induced hyperreactivity of pulmonary arteries. METHODS AND RESULTS: Pulmonary arteries were removed from normoxic or hypoxic (0.5 atm for 21 days) mice and studied for protein expression/localization of COX-1, COX-2, and thromboxane A2 (TXA2)-synthase, release of TXA2, prostacyclin (PGI2) and the isoprostane 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), and vasomotor responses. COX-2 expression was increased in all layers of pulmonary arteries from hypoxic mice. In contrast, COX-1 expression was not significantly modified following chronic hypoxia, whereas TXA2-synthase was decreased. Chronic hypoxia differentially affected prostanoid release from pulmonary arteries: TXA2 secretion was not significantly modified; PGI2 secretion was decreased, whereas 8-iso-PGF2alpha secretion was increased. A selective COX-2 inhibitor decreased 8-iso-PGF2alpha release. Arachidonic acid elicited an endothelium- and COX-1-dependent relaxation in pulmonary arteries from normoxic mice. In contrast, arachidonic acid induced an endothelium-independent contraction in pulmonary arteries from hypoxic mice that was partially reduced by catalase, COX-1, COX-2, or TXA2-synthase inhibitors and was totally abolished by blockade of the thromboxane (TP) receptor. Hyperresponsiveness to phenylephrine (PE) of pulmonary arteries from hypoxic mice was also decreased by COX-2 inhibitors, TP receptor antagonists or catalase, but not by TXA2-synthase inhibitors. Finally, 8-iso-PGF2alpha induced a TP receptor-dependent contraction in pulmonary arteries and markedly potentiated the contractile response to PE. CONCLUSION: Chronic hypoxia up-regulates COX-2 expression, increases 8-iso-PGF2alpha release, and shifts arachidonic acid-induced, endothelium-dependent relaxation to an endothelium-independent and TP receptor-dependent contraction in pulmonary arteries. COX-2-dependent production of 8-iso-PGF2alpha, by activating TP receptors, participates in hypoxia-induced hyperreactivity of pulmonary arteries.


Assuntos
Ciclo-Oxigenase 2/fisiologia , Hipóxia/fisiopatologia , Isoprostanos/fisiologia , Artéria Pulmonar/fisiopatologia , Receptores de Tromboxanos/fisiologia , Animais , Ácido Araquidônico/farmacologia , Dinoprosta/análogos & derivados , Dinoprosta/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilefrina/farmacologia , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...