Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 118(5): 1668-1688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407828

RESUMO

Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has high biomass yield potential enabling the sustainable production of biofuels, biopower, and bioproducts. Bioenergy sorghum's 4-5 m stems account for ~80% of the harvested biomass. Stems accumulate high levels of sucrose that could be used to synthesize bioethanol and useful biopolymers if information about cell-type gene expression and regulation in stems was available to enable engineering. To obtain this information, laser capture microdissection was used to isolate and collect transcriptome profiles from five major cell types that are present in stems of the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type-specific and cell-preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions of each cell type. Analysis of cell-type-specific gene regulatory networks (GRNs) revealed that unique transcription factor families contribute to distinct regulatory landscapes, where regulation is organized through various modes and identifiable network motifs. Cell-specific transcriptome data was combined with known secondary cell wall (SCW) networks to identify the GRNs that differentially activate SCW formation in vascular sclerenchyma and epidermal cells. The spatial transcriptomic dataset provides a valuable source of information about the function of different sorghum cell types and GRNs that will enable the engineering of bioenergy sorghum stems, and an interactive web application developed during this project will allow easy access and exploration of the data (https://mc-lab.shinyapps.io/lcm-dataset/).


Assuntos
Biocombustíveis , Parede Celular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Caules de Planta , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Perfilação da Expressão Gênica
2.
Front Plant Sci ; 14: 1227859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936930

RESUMO

Bioenergy sorghum is a drought-tolerant high-biomass C4 grass targeted for production on annual cropland marginal for food crops due primarily to abiotic constraints. To better understand the overall contribution of stem wax to bioenergy sorghum's resilience, the current study characterized sorghum stem cuticular wax loads, composition, morphometrics, wax pathway gene expression and regulation using vegetative phase Wray, R07020, and TX08001 genotypes. Wax loads on sorghum stems (~103-215 µg/cm2) were much higher than Arabidopsis stem and leaf wax loads. Wax on developing sorghum stem internodes was enriched in C28/30 primary alcohols (~65%) while stem wax on fully developed stems was enriched in C28/30 aldehydes (~80%). Scanning Electron Microscopy showed minimal wax on internodes prior to the onset of elongation and that wax tubules first appear associated with cork-silica cell complexes when internode cell elongation is complete. Sorghum homologs of genes involved in wax biosynthesis/transport were differentially expressed in the stem epidermis. Expression of many wax pathway genes (i.e., SbKCS6, SbCER3-1, SbWSD1, SbABCG12, SbABCG11) is low in immature apical internodes then increases at the onset of stem wax accumulation. SbCER4 is expressed relatively early in stem development consistent with accumulation of C28/30 primary alcohols on developing apical internodes. High expression of two SbCER3 homologs in fully elongated internodes is consistent with a role in production of C28/30 aldehydes. Gene regulatory network analysis aided the identification of sorghum homologs of transcription factors that regulate wax biosynthesis (i.e., SbSHN1, SbWRI1/3, SbMYB94/96/30/60, MYS1) and other transcription factors that could regulate and specify expression of the wax pathway in epidermal cells during cuticle development.

3.
Microbiol Resour Announc ; 12(12): e0046823, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37909720

RESUMO

A collection of 47 bacteria isolated from the mucilage of aerial roots of energy sorghum is available at the Great Lakes Bioenergy Research Center, Michigan State University, Michigan, USA. We enriched bacteria with putative plant-beneficial phenotypes and included information on phenotypic diversity, taxonomy, and whole genome sequences.

4.
Microbiol Resour Announc ; 12(12): e0048423, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37909721

RESUMO

A collection of 44 isolates isolated from the epicuticular wax of stems of energy sorghum is available at the Great Lakes Bioenergy Researcher Center, Michigan State University, MI, USA. We enriched bacteria with putative plant-beneficial phenotypes and include information on their phenotypic diversity, taxonomy, and whole-genome sequences.

5.
Plant J ; 116(2): 360-374, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37395650

RESUMO

Mixed-linkage glucan (MLG) is a component of the cell wall (CW) of grasses and is composed of glucose monomers linked by ß-1,3 and ß-1,4 bonds. MLG is believed to have several biological functions, such as the mobilizable storage of carbohydrates and structural support of the CW. The extracellular levels of MLG are largely controlled by rates of synthesis mediated by cellulose synthase-like (CSL) enzymes, and turnover by lichenases. Economically important crops like sorghum accumulate MLG to variable levels during development. While in sorghum, like other grasses, there is one major MLG synthase (CSLF6), the identity of lichenases is yet unknown. To fill this gap, we identified three sorghum lichenases (SbLCH1-3) and characterized them in leaves in relation to the expression of SbCSLF6, and the abundance of MLG and starch. We established that SbLCH1-3 are secreted to the apoplast, consistent with a role of degrading MLG extracellularly. Furthermore, while SbCSLF6 expression was associated with cell development, the SbLCH genes exhibited distinct development-, cell-type-specific and diel-regulated expression. Therefore, our study identifies three functional sorghum MLG lichenases and highlights that MLG accumulation in sorghum leaves is likely controlled by the activity of lichenases that tune MLG levels, possibly to suit distinct cell and developmental needs in planta. These findings have important implications for improving the growth, yield, and composition of sorghum as a feedstock.


Assuntos
Glucanos , Sorghum , Glucanos/metabolismo , Sorghum/genética , Sorghum/metabolismo , Poaceae/metabolismo , Grão Comestível/metabolismo , Amido/metabolismo , Parede Celular/metabolismo
6.
Front Plant Sci ; 13: 1062264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570942

RESUMO

Bioenergy sorghum hybrids are being developed with enhanced drought tolerance and high levels of stem sugars. Raffinose family oligosaccharides (RFOs) contribute to plant environmental stress tolerance, sugar storage, transport, and signaling. To better understand the role of RFOs in sorghum, genes involved in myo-inositol and RFO metabolism were identified and relative transcript abundance analyzed during development. Genes involved in RFO biosynthesis (SbMIPS1, SbInsPase, SbGolS1, SbRS) were more highly expressed in leaves compared to stems and roots, with peak expression early in the morning in leaves. SbGolS, SbRS, SbAGA1 and SbAGA2 were also expressed at high levels in the leaf collar and leaf sheath. In leaf blades, genes involved in myo-inositol biosynthesis (SbMIPS1, SbInsPase) were expressed in bundle sheath cells, whereas genes involved in galactinol and raffinose synthesis (SbGolS1, SbRS) were expressed in mesophyll cells. Furthermore, SbAGA1 and SbAGA2, genes that encode neutral-alkaline alpha-galactosidases that hydrolyze raffinose, were differentially expressed in minor vein bundle sheath cells and major vein and mid-rib vascular and xylem parenchyma. This suggests that raffinose synthesized from sucrose and galactinol in mesophyll cells diffuses into vascular bundles where hydrolysis releases sucrose for long distance phloem transport. Increased expression (>20-fold) of SbAGA1 and SbAGA2 in stem storage pith parenchyma of sweet sorghum between floral initiation and grain maturity, and higher expression in sweet sorghum compared to grain sorghum, indicates these genes may play a key role in non-structural carbohydrate accumulation in stems.

7.
Plant J ; 112(2): 476-492, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038985

RESUMO

Bioenergy sorghum is a highly productive drought tolerant C4 grass that accumulates 80% of its harvestable biomass in approximately 4 m length stems. Stem internode growth is regulated by development, shading, and hormones that modulate cell proliferation in intercalary meristems (IMs). In this study, sorghum stem IMs were localized above the pulvinus at the base of elongating internodes using magnetic resonance imaging, microscopy, and transcriptome analysis. A change in cell morphology/organization occurred at the junction between the pulvinus and internode where LATERAL ORGAN BOUNDARIES (SbLOB), a boundary layer gene, was expressed. Inactivation of an AGCVIII kinase in DDYM (dw2) resulted in decreased SbLOB expression, disrupted IM localization, and reduced internode cell proliferation. Transcriptome analysis identified approximately 1000 genes involved in cell proliferation, hormone signaling, and other functions selectively upregulated in the IM compared with a non-meristematic stem tissue. This cohort of genes is expressed in apical dome stem tissues before localization of the IM at the base of elongating internodes. Gene regulatory network analysis identified connections between genes involved in hormone signaling and cell proliferation. The results indicate that gibberellic acid induces accumulation of growth regulatory factors (GRFs) known to interact with ANGUSTIFOLIA (SbAN3), a master regulator of cell proliferation. GRF:AN3 was predicted to induce SbARF3/ETT expression and regulate SbAN3 expression in an auxin-dependent manner. GRFs and ARFs regulate genes involved in cytokinin and brassinosteroid signaling and cell proliferation. The results provide a molecular framework for understanding how hormone signaling regulates the expression of genes involved in cell proliferation in the stem IM.


Assuntos
Sorghum , Sorghum/metabolismo , Redes Reguladoras de Genes , Regulação da Expressão Gênica de Plantas/genética , Brassinosteroides , Ácidos Indolacéticos/metabolismo , Citocininas , Grão Comestível/metabolismo , Hormônios
8.
J Exp Bot ; 73(19): 6711-6726, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35961690

RESUMO

The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.


Assuntos
Secas , Sorghum , Locos de Características Quantitativas/genética , Sorghum/fisiologia , Fenótipo , Adaptação Fisiológica/genética , Grão Comestível/genética
9.
Opt Express ; 30(7): 10614-10632, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473024

RESUMO

A field-ready, fiber-based high spatial sampling snapshot imaging spectrometer was developed for applications such as environmental monitoring and smart farming. The system achieves video rate frame transfer and exposure times down to a few hundred microseconds in typical daylight conditions with ∼63,000 spatial points and 32 spectral channels across the 470nm to 700nm wavelength range. We designed portable, ruggedized opto-mechanics to allow for imaging from an airborne platform. To ensure successful data collection prior to flight, imaging speed and signal-to-noise ratio was characterized for imaging a variety of land covers from the air. The system was validated by performing a series of observations including: Liriope Muscari plants under a range of water-stress conditions in a controlled laboratory experiment and field observations of sorghum plants in a variety of soil conditions. Finally, we collected data from a series of engineering flights and present reassembled images and spectral sampling of rural and urban landscapes.


Assuntos
Diagnóstico por Imagem , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental , Plantas
10.
Planta ; 254(6): 119, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762174

RESUMO

MAIN CONCLUSION: Developmental and organ-specific expression of genes in dhurrin biosynthesis, bio-activation, and recycling offers dynamic metabolic responses optimizing growth and defence responses in Sorghum. Plant defence models evaluate the costs and benefits of resource investments at different stages in the life cycle. Poor understanding of the molecular regulation of defence deployment and remobilization hampers accuracy of the predictions. Cyanogenic glucosides, such as dhurrin are phytoanticipins that release hydrogen cyanide upon bio-activation. In this study, RNA-seq was used to investigate the expression of genes involved in the biosynthesis, bio-activation and recycling of dhurrin in Sorghum bicolor. Genes involved in dhurrin biosynthesis were highly expressed in all young developing vegetative tissues (leaves, leaf sheath, roots, stems), tiller buds and imbibing seeds and showed gene specific peaks of expression in leaves during diel cycles. Genes involved in dhurrin bio-activation were expressed early in organ development with organ-specific expression patterns. Genes involved in recycling were expressed at similar levels in the different organ during development, although post-floral initiation when nutrients are remobilized for grain filling, expression of GSTL1 decreased > tenfold in leaves and NITB2 increased > tenfold in stems. Results are consistent with the establishment of a pre-emptive defence in young tissues and regulated recycling related to organ senescence and increased demand for nitrogen during grain filling. This detailed characterization of the transcriptional regulation of dhurrin biosynthesis, bioactivation and remobilization genes during organ and plant development will aid elucidation of gene regulatory networks and signalling pathways that modulate gene expression and dhurrin levels. In-depth knowledge of dhurrin metabolism could improve the yield, nitrogen use efficiency and stress resilience of Sorghum.


Assuntos
Sorghum , Expressão Gênica , Glicosídeos , Nitrilas , Sorghum/genética
11.
Sci Rep ; 11(1): 46, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420129

RESUMO

The stems of bioenergy sorghum hybrids at harvest are > 4 m long, contain > 40 internodes and account for ~ 80% of harvested biomass. In this study, bioenergy sorghum hybrids were grown at four planting densities (~ 20,000 to 132,000 plants/ha) under field conditions for 60 days to investigate the impact shading has on stem growth and biomass accumulation. Increased planting density induced a > 2-fold increase in sorghum internode length and a ~ 22% decrease in stem diameter, a typical shade avoidance response. Shade-induced internode elongation was due to an increase in cell length and number of cells spanning the length of internodes. SbGA3ox2 (Sobic.003G045900), a gene encoding the last step in GA biosynthesis, was expressed ~ 20-fold higher in leaf collar tissue of developing phytomers in plants grown at high vs. low density. Application of GA3 to bioenergy sorghum increased plant height, stem internode length, cell length and the number of cells spanning internodes. Prior research showed that sorghum plants lacking phytochrome B, a key photoreceptor involved in shade signaling, accumulated more GA1 and displayed shade avoidance phenotypes. These results are consistent with the hypothesis that increasing planting density induces expression of GA3-oxidase in leaf collar tissue, increasing synthesis of GA that stimulates internode elongation.


Assuntos
Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Sorghum/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica de Plantas , Folhas de Planta/enzimologia , Caules de Planta/metabolismo , Sorghum/crescimento & desenvolvimento , Sorghum/fisiologia
12.
Plant J ; 105(4): 1053-1071, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33211340

RESUMO

Stems of bioenergy sorghum (Sorghum bicolor L. Moench.), a drought-tolerant C4 grass, contain up to 50 nodes and internodes of varying length that span 4-5 m and account for approximately 84% of harvested biomass. Stem internode growth impacts plant height and biomass accumulation and is regulated by brassinosteroid signaling, auxin transport, and gibberellin biosynthesis. In addition, an AGCVIII kinase (Dw2) regulates sorghum stem internode growth, but the underlying mechanism and signaling network are unknown. Here we provide evidence that mutation of Dw2 reduces cell proliferation in internode intercalary meristems, inhibits endocytosis, and alters the distribution of heteroxylan and mixed linkage glucan in cell walls. Phosphoproteomic analysis showed that Dw2 signaling influences the phosphorylation of proteins involved in lipid signaling (PLDδ), endomembrane trafficking, hormone, light, and receptor signaling, and photosynthesis. Together, our results show that Dw2 modulates endomembrane function and cell division during sorghum internode growth, providing insight into the regulation of monocot stem development.


Assuntos
Proliferação de Células/fisiologia , Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Sorghum/fisiologia , Xilanos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hibridização In Situ , Microscopia Confocal , Fosforilação , Proteínas de Plantas/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Feixe Vascular de Plantas/metabolismo , Feixe Vascular de Plantas/fisiologia , Feixe Vascular de Plantas/ultraestrutura , Proteômica , Sorghum/enzimologia , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo
13.
Plant Direct ; 4(6): e00235, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32607464

RESUMO

Stem internodes of bioenergy sorghum inbred R.07020 are longer at high plant density (shade) than at low plant density (control). Initially, the youngest newly-formed subapical stem internodes of shade-treated and control plants are comparable in length. However, full-length internodes of shade-treated plants are three times longer than the internodes of the control plants. To identify the early molecular events associated with internode elongation in response to shade, we analyzed the transcriptome of the newly-formed internodes of shade-treated and control plants sampled between 4 and 6 hr after the start of the light period (14 hr light/10 hr dark). Sorghum genes homologous to the Arabidopsis shade marker genes ATHB2 and PIL1 were not differentially expressed. The results indicate that shade signals promote internode elongation indirectly because sorghum internodes are not illuminated and grow while enclosed with leaf sheaths. Sorghum genes homologous to the Arabidopsis morning-phased circadian clock genes LHY, RVE, and LNK were downregulated and evening-phased genes such as TOC1, PRR5, and GI were upregulated in young internodes in response to shade. We hypothesize that a change in the function or patterns of expression of the circadian clock genes is the earliest molecular event associated with internode elongation in response to shade in bioenergy sorghum. Increased expression of CycD1, which promotes cell division, and decreased expression of cell wall-loosening and MBF1-like genes, which promote cell expansion, suggest that shade signals promote internode elongation in bioenergy sorghum in part through increasing cell number by delaying transition from cell division to cell expansion.

14.
Geoderma ; 3702020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36452276

RESUMO

The development of a robust method to non-invasively visualize root morphology in natural soils has been hampered by the opaque, physical, and structural properties of soils. In this work we describe a novel technology, low field magnetic resonance imaging (LF-MRI), for imaging energy sorghum (Sorghum bicolor (L.) Moench) root morphology and architecture in intact soils. The use of magnetic fields much weaker than those used with traditional MRI experiments reduces the distortion due to magnetic material naturally present in agricultural soils. A laboratory based LF-MRI operating at 47 mT magnetic field strength was evaluated using two sets of soil cores: 1) soil/root cores of Weswood silt loam (Udifluventic Haplustept) and a Belk clay (Entic Hapluderts) from a conventionally tilled field, and 2) soil/root cores from rhizotrons filled with either a Houston Black (Udic Haplusterts) clay or a sandy loam purchased from a turf company. The maximum soil water nuclear magnetic resonance (NMR) relaxation time T2 (4 ms) and the typical root water relaxation time T2 (100 ms) are far enough apart to provide a unique contrast mechanism such that the soil water signal has decayed to the point of no longer being detectable during the data collection time period. 2-D MRI projection images were produced of roots with a diameter range of 1.5-2.0 mm using an image acquisition time of 15 min with a pixel resolution of 1.74 mm in four soil types. Additionally, we demonstrate the use of a data-driven machine learning reconstruction approach, Automated Transform by Manifold Approximation (AUTOMAP) to reconstruct raw data and improve the quality of the final images. The application of AUTOMAP showed a SNR (Signal to Noise Ratio) improvement of two fold on average. The use of low field MRI presented here demonstrates the possibility of applying low field MRI through intact soils to root phenotyping and agronomy to aid in understanding of root morphology and the spatial arrangement of roots in situ.

15.
PLoS One ; 14(4): e0212154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969968

RESUMO

Sorghum bicolor is a drought-resilient facultative short-day C4 grass that is grown for grain, forage, and biomass. Adaptation of sorghum for grain production in temperate regions resulted in the selection of mutations in Maturity loci (Ma1 -Ma6) that reduced photoperiod sensitivity and resulted in earlier flowering in long days. Prior studies identified the genes associated with Ma1 (PRR37), Ma3 (PHYB), Ma5 (PHYC) and Ma6 (GHD7) and characterized their role in the flowering time regulatory pathway. The current study focused on understanding the function and identity of Ma2. Ma2 delayed flowering in long days by selectively enhancing the expression of SbPRR37 (Ma1) and SbCO, genes that co-repress the expression of SbCN12, a source of florigen. Genetic analysis identified epistatic interactions between Ma2 and Ma4 and located QTL corresponding to Ma2 on SBI02 and Ma4 on SBI10. Positional cloning and whole genome sequencing identified a candidate gene for Ma2, Sobic.002G302700, which encodes a SET and MYND (SYMD) domain lysine methyltransferase. Eight sorghum genotypes previously identified as recessive for Ma2 contained the mutated version of Sobic.002G302700 present in 80M (ma2) and one additional putative recessive ma2 allele was identified in diverse sorghum accessions.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Locos de Características Quantitativas , Sorghum/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Flores/genética , Genes de Plantas , Fotoperíodo , Proteínas de Plantas/genética , Sorghum/genética
16.
Anal Chem ; 91(3): 2472-2479, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30624904

RESUMO

The cuticle covers external surfaces of plants, protecting them from biotic and abiotic stress factors. Epicuticular wax on the outer surface of the cuticle modifies reflectance and water loss from plant surfaces and has direct and indirect effects on photosynthesis. Variation in epicuticular wax accumulation, composition, and nanoscale structural organization impacts its biological function. Atomic force microscope infrared spectroscopy (AFM-IR) was utilized to investigate the internal and external surfaces of the cuticle of Sorghum bicolor, an important drought-tolerant cereal, forage, and high-biomass crop. AFM-IR revealed striking heterogeneity in chemical composition within and between the surfaces of the cuticle. The wax aggregate crystallinity and distribution of chemical functional groups across the surfaces was also probed and compared. These results, along with the noninvasive nondestructive nature of the method, suggest that AFM-IR can be used to investigate mechanisms of wax deposition and transport of charged molecules through the plant cuticle.


Assuntos
Epiderme Vegetal/química , Caules de Planta/química , Ceras/análise , Microscopia de Força Atômica/métodos , Conformação Molecular , Epiderme Vegetal/ultraestrutura , Caules de Planta/ultraestrutura , Sorghum/química , Espectrofotometria Infravermelho/métodos , Ceras/química
17.
PLoS One ; 13(4): e0195863, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29684037

RESUMO

This study was conducted to document the extent and basis of compositional variation of shoot biomass of the energy Sorghum bicolor hybrid TX08001 during development under field conditions. TX08001 is capable of accumulating ~40 Mg/ha of dry biomass under good growing conditions and this genotype allocates ~80% of its shoot biomass to stems. After 150 days of growth TX08001 stems had a fresh/dry weight ratio of ~3:1 and soluble biomass accounted for ~30% of stem biomass. A panel of diverse energy sorghum genotypes varied ~6-fold in the ratio of stem structural to soluble biomass after 150 days of growth. Near-infrared spectroscopic analysis (NIRS) showed that TX08001 leaves accumulated higher levels of protein, water extractives and ash compared to stems, which have higher sugar, cellulose, and lignin contents. TX08001 stem sucrose content varied during development, whereas the composition of TX08001 stem cell walls, which consisted of ~45-49% cellulose, ~27-30% xylan, and ~15-18% lignin, remained constant after 90 days post emergence until the end of the growing season (180 days). TX08001 and Della stem syringyl (S)/guaiacyl (G) (0.53-0.58) and ferulic acid (FA)/para-coumaric acid (pCA) ratios were similar whereas ratios of pCA/(S+G) differed between these genotypes. Additionally, an analysis of irrigated versus non-irrigated TX08001 revealed that non-irrigated hybrids exhibited a 50% reduction in total cell wall biomass, an ~2-fold increase in stem sugars, and an ~25% increase in water extractives relative to irrigated hybrids. This study provides a baseline of information to help guide further optimization of energy sorghum composition for various end-uses.


Assuntos
Metabolismo Energético , Lignina/metabolismo , Sorghum/crescimento & desenvolvimento , Irrigação Agrícola , Biomassa , Genótipo , Lignina/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Sorghum/genética , Sorghum/metabolismo
18.
Plant J ; 93(2): 338-354, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161754

RESUMO

Sorghum bicolor is a drought tolerant C4 grass used for the production of grain, forage, sugar, and lignocellulosic biomass and a genetic model for C4 grasses due to its relatively small genome (approximately 800 Mbp), diploid genetics, diverse germplasm, and colinearity with other C4 grass genomes. In this study, deep sequencing, genetic linkage analysis, and transcriptome data were used to produce and annotate a high-quality reference genome sequence. Reference genome sequence order was improved, 29.6 Mbp of additional sequence was incorporated, the number of genes annotated increased 24% to 34 211, average gene length and N50 increased, and error frequency was reduced 10-fold to 1 per 100 kbp. Subtelomeric repeats with characteristics of Tandem Repeats in Miniature (TRIM) elements were identified at the termini of most chromosomes. Nucleosome occupancy predictions identified nucleosomes positioned immediately downstream of transcription start sites and at different densities across chromosomes. Alignment of more than 50 resequenced genomes from diverse sorghum genotypes to the reference genome identified approximately 7.4 M single nucleotide polymorphisms (SNPs) and 1.9 M indels. Large-scale variant features in euchromatin were identified with periodicities of approximately 25 kbp. A transcriptome atlas of gene expression was constructed from 47 RNA-seq profiles of growing and developed tissues of the major plant organs (roots, leaves, stems, panicles, and seed) collected during the juvenile, vegetative and reproductive phases. Analysis of the transcriptome data indicated that tissue type and protein kinase expression had large influences on transcriptional profile clustering. The updated assembly, annotation, and transcriptome data represent a resource for C4 grass research and crop improvement.


Assuntos
Variação Genética/genética , Genoma de Planta/genética , Sorghum/genética , Transcriptoma , Análise por Conglomerados , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Anotação de Sequência Molecular , Nucleossomos/genética , Polimorfismo de Nucleotídeo Único/genética
19.
Plant Direct ; 2(11): e00085, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31245693

RESUMO

Sorghum bicolor is a drought-resilient C4 grass used for production of grain, forage, sugar, and biomass. Sorghum genotypes capable of accumulating high levels of stem sucrose have solid stems that contain low levels of aerenchyma. The D-locus on SBI06 modulates the extent of aerenchyma formation in sorghum stems and leaf midribs. A QTL aligned with this locus was identified and fine-mapped in populations derived from BTx623*IS320c, BTx623*R07007, and BTx623*Standard broomcorn. Analysis of coding polymorphisms in the fine-mapped D-locus showed that genotypes that accumulate low levels of aerenchyma encode a truncated NAC transcription factor (Sobic.006G147400, SbNAC_d1), whereas parental lines that accumulate higher levels of stem aerenchyma encode full-length NAC TFs (SbNAC-D). During vegetative stem development, aerenchyma levels are low in nonelongated stem internodes, internode growing zones, and nodes. Aerenchyma levels increase in recently elongated internodes starting at the top of the internode near the center of the stem. SbNAC_D was expressed at low levels in nonelongated internodes and internode growing zones and at higher levels in regions of stem internodes that form aerenchyma. SbXCP1, a gene encoding a cysteine protease involved in programmed cell death, was induced in SbNAC_D genotypes in parallel with aerenchyma formation in sorghum stems but not in SbNAC_d1 genotypes. Several sweet sorghum genotypes encode the recessive SbNAC_d1 allele and have low levels of stem aerenchyma. Based on these results, we propose that SbNAC_D is the D-gene identified by Hilton (1916) and that allelic variation in SbNAC_D modulates the extent of aerenchyma formation in sorghum stems.

20.
Plant Direct ; 2(8): e00074, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31245742

RESUMO

Sweet sorghums were identified that accumulate up to ~9% of their total stem dry weight as starch. Starch accumulated preferentially in stem pith parenchyma in close proximity to vascular bundles. Stem starch accumulated slowly between floral initiation and anthesis and more rapidly between anthesis and 43 days post-anthesis before declining in parallel with tiller outgrowth. Genes involved in stem starch metabolism were identified through phylogenetic approaches and RNA-seq analysis of Della stem gene expression during the starch accumulation phase of development. Genes differentially expressed in stems were identified that are involved in starch biosynthesis (i.e., AGPase SS/LS, starch synthases, starch-branching enzymes), degradation (i.e., glucan-water dikinase, ß-amylase, disproportionating enzyme, alpha-glucan phosphorylase) and amyloplast sugar transport (glucose-6-P translocator). Transcripts encoding AGPase SS and LS subunits with plastid localization were differentially induced during stem starch accumulation indicating that ADP-glucose for starch biosynthesis is primarily generated in stem plastids. Cytosolic heteroglucan metabolism may play a role in stem sucrose/starch accumulation because genes encoding cytosolic forms of the disproportionating enzyme and alpha-glucan phosphorylase were induced in parallel with stem sucrose/starch accumulation. Information on the stem starch pathway obtained in this study will be useful for engineering sorghum stems with elevated starch thereby improving forage quality and the efficiency of biomass conversion to biofuels and bio-products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...