Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38454911

RESUMO

Air pollution is an escalating concern in the modern world, posing substantial threats to ecosystem processes. While the importance of comprehending the impact of pollutants on natural environments is evident, conducting rigorous field-based experiments presents formidable challenges. Elevating pollutant concentrations within open air environments in a controlled manner is complex. Nonetheless, such real-world experiments are invaluable for revealing the genuine influence of air pollutants on ecosystems and their functioning. Field-scale measurements have emerged as a pivotal avenue for advancing our understanding of the interactions between air pollutants and the natural world, providing unique insights into ecosystem dynamics, including critical processes like pollination and natural pest regulation. In atmospheric and ecological research, free-air exposure systems have proven effective in elevating carbon dioxide (CO2) and ozone (O3) concentrations, facilitating the exploration of their ecological consequences. Yet, nitrogen oxides (NOx), a class of pollutants with significant ecological and atmospheric relevance, have largely eluded field-based ecological investigations. This paper introduces the recently developed FADOE (Free-Air Diesel and Ozone Enrichment) platform, which allows the elevation of O3 and diesel exhaust (including NOx) within a field-scale context. Comprehensive information on the system's design, construction, and performance data from the 2023 summer season is presented.•Air pollution and ecosystem functioning•Elevated ozone and nitrogen oxides (NOx)•Free-air exposure systems for field scale measurements.

2.
Environ Pollut ; 336: 122336, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595729

RESUMO

The critical ecological process of animal-mediated pollination is commonly facilitated by odour cues. These odours consist of volatile organic compounds (VOCs), often with short chemical lifetimes, which form the strong concentration gradients necessary for pollinating insects to locate a flower. Atmospheric oxidants, including ozone pollution, may react with and chemically alter these VOCs, impairing the ability of pollinators to locate a flower, and therefore the pollen and nectar on which they feed. However, there is limited mechanistic empirical evidence to explain these processes within an odour plume at temporal and spatial scales relevant to insect navigation and olfaction. We investigated the impact of ozone pollution and turbulent mixing on the fate of four model floral VOCs within odour plumes using a series of controlled experiments in a large wind tunnel. Average rates of chemical degradation of α-terpinene, ß-caryophyllene and 6-methyl-5-hepten-2-one were slightly faster than predicted by literature rate constants, but mostly within uncertainty bounds. Mixing reduced reaction rates by 8-10% in the first 2 m following release. Reaction rates also varied across the plumes, being fastest at plume edges where VOCs and ozone mixed most efficiently and slowest at plume centres. Honeybees were trained to learn a four VOC blend equivalent to the plume released at the wind tunnel source. When subsequently presented with an odour blend representative of that observed 6 m from the source at the centre of the plume, 52% of honeybees recognised the odour, decreasing to 38% at 12 m. When presented with the more degraded blend from the plume edge, recognition decreased to 32% and 10% at 6 and 12 m respectively. Our findings highlight a mechanism by which anthropogenic pollutants can disrupt the VOC cues used in plant-pollinator interactions, which likely impacts on other critical odour-mediated behaviours such as mate attraction.

3.
Proc Biol Sci ; 289(1986): 20221692, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350222

RESUMO

Air pollutants-such as nitrogen oxides, emitted in diesel exhaust, and ozone (O3)-disrupt interactions between plants, the insect herbivore pests that feed upon them and natural enemies of those herbivores (e.g. parasitoids). Using eight field-based rings that emit regulated quantities of diesel exhaust and O3, we investigated how both pollutants, individually and in combination, altered the attraction and parasitism rate of a specialist parasitoid (Diaeretiella rapae) on aphid-infested and un-infested Brassica napus plants. Individual effects of O3 decreased D. rapae abundance and emergence by 37% and 55%, respectively, compared with ambient (control) conditions. When O3 and diesel exhaust were emitted concomitantly, D. rapae abundance and emergence increased by 79% and 181%, respectively, relative to control conditions. This attraction response occurred regardless of whether plants were infested with aphids and was associated with an increase in the concentration of aliphatic glucosinolates, especially gluconapin (3-butenyl-glucosinolate), within B. napus leaves. Plant defensive responses and their ability to attract natural aphid enemies may be beneficially impacted by pollution exposure. These results demonstrate the importance of incorporating multiple air pollutants when considering the effects of air pollution on plant-insect interactions.


Assuntos
Poluentes Atmosféricos , Afídeos , Animais , Interações Hospedeiro-Parasita , Emissões de Veículos , Glucosinolatos , Afídeos/fisiologia
4.
Environ Pollut ; 297: 118847, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063287

RESUMO

Common air pollutants, such as nitrogen oxides (NOx), emitted in diesel exhaust, and ozone (O3), have been implicated in the decline of pollinating insects. Reductionist laboratory assays, focused upon interactions between a narrow range of flowering plant and pollinator species, in combination with atmospheric chemistry models, indicate that such pollutants can chemically alter floral odors, disrupting the cues that foraging insects use to find and pollinate flowers. However, odor environments in nature are highly complex and pollination services are commonly provided by suites of insect species, each exhibiting different sensitivities to different floral odors. Therefore, the potential impacts of pollution-induced foraging disruption on both insect ecology, and the pollination services that insects provide, are currently unknown. We conducted in-situ field studies to investigate whether such pollutants could reduce pollinator foraging and as a result the pollination ecosystem service that those insects provide. Using free-air fumigation, we show that elevating diesel exhaust and O3, individually and in combination, to levels lower than is considered safe under current air quality standards, significantly reduced counts of locally-occurring wild and managed insect pollinators by 62-70% and their flower visits by 83-90%. These reductions were driven by changes in specific pollinator groups, including bees, flies, moths and butterflies, and coincided with significant reductions (14-31%) in three different metrics of pollination and yield of a self-fertile test plant. Quantifying such effects provides new insights into the impacts of human-induced air pollution on the natural ecosystem services upon which we depend.


Assuntos
Poluentes Atmosféricos , Borboletas , Animais , Abelhas , Ecossistema , Flores , Insetos , Polinização
5.
Appl Radiat Isot ; 65(1): 92-103, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16934478

RESUMO

Liquid scintillation spectrometry is used widely for determining (222)Rn in natural waters; however, the benefits of alpha/beta separation have not been fully explored. The extractants toluene and Ultima Gold F were compared, and both performed well for a range of extreme waters. A robust method for calibrating extraction and counting efficiencies has been developed. Detection limits are 20 mBql(-1) (toluene) and 16 mBql(-1) (UGF) for a 60 min count and 600-ml sample, halving the required sample volume.


Assuntos
Água Doce/análise , Monitoramento de Radiação/métodos , Contagem de Cintilação/métodos , Poluentes Radioativos da Água/análise , Água/química , Partículas alfa , Partículas beta , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Soluções , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...