Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nat Commun ; 15(1): 180, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167338

RESUMO

Inactivating TP53 mutations leads to a loss of function of p53, but can also often result in oncogenic gain-of-function (GOF) of mutant p53 (mutp53) proteins which promotes tumor development and progression. The GOF activities of TP53 mutations are well documented, but the mechanisms involved remain poorly understood. Here, we study the mutp53 interactome and find that by targeting minichromosome maintenance complex components (MCMs), GOF mutp53 predisposes cells to replication stress and chromosomal instability (CIN), leading to a tumor cell-autonomous and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent cytosolic DNA response that activates downstream non-canonical nuclear factor kappa light chain enhancer of activated B cell (NC-NF-κB) signaling. Consequently, GOF mutp53-MCMs-CIN-cytosolic DNA-cGAS-STING-NC-NF-κB signaling promotes tumor cell metastasis and an immunosuppressive tumor microenvironment through antagonizing interferon signaling and regulating genes associated with pro-tumorigenic inflammation. Our findings have important implications for understanding not only the GOF activities of TP53 mutations but also the genome-guardian role of p53 and its inactivation during tumor development and progression.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , DNA , Instabilidade Cromossômica/genética , Nucleotidiltransferases/metabolismo , Interferons/metabolismo , Microambiente Tumoral
2.
Oncogene ; 41(50): 5331-5346, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344674

RESUMO

Low-molecular-weight cyclin E (LMW-E) is an N-terminus deleted (40 amino acid) form of cyclin E detected in breast cancer, but not in normal cells or tissues. LMW-E overexpression predicts poor survival in breast cancer patients independent of tumor proliferation rate, but the oncogenic mechanism of LMW-E and its unique function(s) independent of full-length cyclin E (FL-cycE) remain unclear. In the current study, we found LMW-E was associated with genomic instability in early-stage breast tumors (n = 725) and promoted genomic instability in human mammary epithelial cells (hMECs). Mechanistically, FL-cycE overexpression inhibited the proliferation of hMECs by replication stress and DNA damage accumulation, but LMW-E facilitated replication stress tolerance by upregulating DNA replication and damage repair. Specifically, LMW-E interacted with chromatin and upregulated the loading of minichromosome maintenance complex proteins (MCMs) in a CDC6 dependent manner and promoted DNA repair in a RAD51- and C17orf53-dependent manner. Targeting the ATR-CHK1-RAD51 pathway with ATR inhibitor (ceralasertib), CHK1 inhibitor (rabusertib), or RAD51 inhibitor (B02) significantly decreased the viability of LMW-E-overexpressing hMECs and breast cancer cells. Collectively, our findings delineate a novel role for LMW-E in tumorigenesis mediated by replication stress tolerance and genomic instability, providing novel therapeutic strategies for LMW-E-overexpressing breast cancers.


Assuntos
Neoplasias da Mama , Ciclina E , Humanos , Feminino , Ciclina E/genética , Ciclina E/metabolismo , Neoplasias da Mama/patologia , Quinase 2 Dependente de Ciclina/genética , Biomarcadores Tumorais/metabolismo , Instabilidade Genômica , Inibidores de Proteínas Quinases/farmacologia , Replicação do DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética
3.
Evolution ; 76(4): 782-798, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271737

RESUMO

The structure of the genome shapes the distribution of genetic diversity and sequence divergence. To investigate how the relationship between chromosome size and recombination rate affects sequence divergence between species, we combined empirical analyses and evolutionary simulations. We estimated pairwise sequence divergence among 15 species from three different mammalian clades-Peromyscus rodents, Mus mice, and great apes-from chromosome-level genome assemblies. We found a strong significant negative correlation between chromosome size and sequence divergence in all species comparisons within the Peromyscus and great apes clades but not the Mus clade, suggesting that the dramatic chromosomal rearrangements among Mus species may have masked the ancestral genomic landscape of divergence in many comparisons. Our evolutionary simulations showed that the main factor determining differences in divergence among chromosomes of different sizes is the interplay of recombination rate and selection, with greater variation in larger populations than in smaller ones. In ancestral populations, shorter chromosomes harbor greater nucleotide diversity. As ancestral populations diverge, diversity present at the onset of the split contributes to greater sequence divergence in shorter chromosomes among daughter species. The combination of empirical data and evolutionary simulations revealed that chromosomal rearrangements, demography, and divergence times may also affect the relationship between chromosome size and divergence, thus deepening our understanding of the role of genome structure in the evolution of species divergence.


Assuntos
Evolução Molecular , Hominidae , Animais , Cromossomos/genética , Genoma , Hominidae/genética , Mamíferos/genética , Recombinação Genética
4.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614027

RESUMO

The human adrenal cortex is composed of distinct zones that are the main source of steroid hormone production. The mechanism of adrenocortical cell differentiation into several functionally organized populations with distinctive identities remains poorly understood. Human adrenal disease has been difficult to study, in part due to the absence of cultured cell lines that faithfully represent adrenal cell precursors in the early stages of transformation. Here, Human Adrenocortical Adenoma (HAA1) cell line derived from a patient's macronodular adrenocortical hyperplasia and was treated with histone deacetylase inhibitors (HDACis) and gene expression was examined. We describe a patient-derived HAA1 cell line derived from the zona reticularis, the innermost zone of the adrenal cortex. The HAA1 cell line is unique in its ability to exit a latent state and respond with steroidogenic gene expression upon treatment with histone deacetylase inhibitors. The gene expression pattern of differentiated HAA1 cells partially recreates the roster of genes in the adrenal layer that they have been derived from. Gene ontology analysis of whole genome RNA-seq corroborated increased expression of steroidogenic genes upon HDAC inhibition. Surprisingly, HDACi treatment induced broad activation of the Tumor Necrosis Factor (TNF) alpha pathway. This novel cell line we developed will hopefully be instrumental in understanding the molecular and biochemical mechanisms controlling adrenocortical differentiation and steroidogenesis.


Assuntos
Córtex Suprarrenal , Adenoma Adrenocortical , Humanos , Zona Reticular/metabolismo , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Corticosteroides/metabolismo , Linhagem Celular
5.
Cancer Discov ; 12(4): 1046-1069, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34930786

RESUMO

Focal amplifications (FA) can mediate targeted therapy resistance in cancer. Understanding the structure and dynamics of FAs is critical for designing treatments that overcome plasticity-mediated resistance. We developed a melanoma model of dual MAPK inhibitor (MAPKi) resistance that bears BRAFV600 amplifications through either extrachromosomal DNA (ecDNA)/double minutes (DM) or intrachromosomal homogenously staining regions (HSR). Cells harboring BRAFV600E FAs displayed mode switching between DMs and HSRs, from both de novo genetic changes and selection of preexisting subpopulations. Plasticity is not exclusive to ecDNAs, as cells harboring HSRs exhibit drug addiction-driven structural loss of BRAF amplicons upon dose reduction. FA mechanisms can couple with kinase domain duplications and alternative splicing to enhance resistance. Drug-responsive amplicon plasticity is observed in the clinic and can involve other MAPK pathway genes, such as RAF1 and NRAS. BRAF FA-mediated dual MAPKi-resistant cells are more sensitive to proferroptotic drugs, extending the spectrum of ferroptosis sensitivity in MAPKi resistance beyond cases of dedifferentiation. SIGNIFICANCE: Understanding the structure and dynamics of oncogene amplifications is critical for overcoming tumor relapse. BRAF amplifications are highly plastic under MAPKi dosage challenges in melanoma, through involvement of de novo genomic alterations, even in the HSR mode. Moreover, BRAF FA-driven, dual MAPKi-resistant cells extend the spectrum of resistance-linked ferroptosis sensitivity. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Oncogenes , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
6.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638434

RESUMO

BRAF-activating mutations are the most frequent driver mutations in papillary thyroid cancer (PTC). Targeted inhibitors such as dabrafenib have been used in advanced BRAF-mutated PTC; however, acquired resistance to the drug is common and little is known about other effectors that may play integral roles in this resistance. In addition, the induction of PTC dedifferentiation into highly aggressive KRAS-driven anaplastic thyroid cancer (ATC) has been reported. We detected a novel RAC1 (P34R) mutation acquired during dabrafenib treatment in a progressive metastatic lesion with ATC phenotype. To identify a potential functional link between this novel mutation and tumor dedifferentiation, we developed a cell line derived from the metastatic lesion and compared its behavior to isogenic cell lines and primary tumor samples. Our data demonstrated that RAC1 mutations induce changes in cell morphology, reorganization of F-actin almost exclusively at the cell cortex, and changes in cell adhesion properties. We also established that RAC1 amplification, with or without mutation, is sufficient to drive cell proliferation and resistance to BRAF inhibition. Further, we identified polyploidy of chromosome 7, which harbors RAC1, in both the metastatic lesion and its derived cell line. Copy number amplification and overexpression of other genes located on this chromosome, such as TWIST1, EGFR, and MET were also detected, which might also lead to dabrafenib resistance. Our study suggests that polyploidy leading to increased expression of specific genes, particularly those located on chromosome 7, should be considered when analyzing aggressive thyroid tumor samples and in further treatments.

7.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34253611

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory condition driven by diverse genetic and nongenetic programs that converge to disrupt immune homeostasis in the intestine. We have reported that, in murine intestinal epithelium with telomere dysfunction, DNA damage-induced activation of ataxia-telangiectasia mutated (ATM) results in ATM-mediated phosphorylation and activation of the YAP1 transcriptional coactivator, which in turn up-regulates pro-IL-18, a pivotal immune regulator in IBD pathogenesis. Moreover, individuals with germline defects in telomere maintenance genes experience increased occurrence of intestinal inflammation and show activation of the ATM/YAP1/pro-IL-18 pathway in the intestinal epithelium. Here, we sought to determine the relevance of the ATM/YAP1/pro-IL-18 pathway as a potential driver of IBD, particularly older-onset IBD. Analysis of intestinal biopsy specimens and organoids from older-onset IBD patients documented the presence of telomere dysfunction and activation of the ATM/YAP1/precursor of interleukin 18 (pro-IL-18) pathway in the intestinal epithelium. Employing intestinal organoids from healthy individuals, we demonstrated that experimental induction of telomere dysfunction activates this inflammatory pathway. In organoid models from ulcerative colitis and Crohn's disease patients, pharmacological interventions of telomerase reactivation, suppression of DNA damage signaling, or YAP1 inhibition reduced pro-IL-18 production. Together, these findings support a model wherein telomere dysfunction in the intestinal epithelium can initiate the inflammatory process in IBD, pointing to therapeutic interventions for this disease.


Assuntos
Doenças Inflamatórias Intestinais/imunologia , Telômero/imunologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/imunologia , Humanos , Doenças Inflamatórias Intestinais/genética , Interleucina-18/genética , Interleucina-18/imunologia , Mucosa Intestinal/imunologia , Camundongos , Telomerase/genética , Telomerase/imunologia , Telômero/genética , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/imunologia
8.
Nat Cancer ; 2(12): 1338-1356, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121902

RESUMO

Despite efforts in understanding its underlying mechanisms, the etiology of chromosomal instability (CIN) remains unclear for many tumor types. Here, we identify CIN initiation as a previously undescribed function for APOBEC3A (A3A), a cytidine deaminase upregulated across cancer types. Using genetic mouse models of pancreatic ductal adenocarcinoma (PDA) and genomics analyses in human tumor cells we show that A3A-induced CIN leads to aggressive tumors characterized by enhanced early dissemination and metastasis in a STING-dependent manner and independently of the canonical deaminase functions of A3A. We show that A3A upregulation recapitulates numerous copy number alterations commonly observed in patients with PDA, including co-deletions in DNA repair pathway genes, which in turn render these tumors susceptible to poly (ADP-ribose) polymerase inhibition. Overall, our results demonstrate that A3A plays an unexpected role in PDA as a specific driver of CIN, with significant effects on disease progression and treatment.


Assuntos
Citidina Desaminase , Neoplasias Pancreáticas , Animais , Instabilidade Cromossômica/genética , Citidina Desaminase/genética , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Proteínas/genética , Neoplasias Pancreáticas
9.
Gastroenterology ; 159(6): 2146-2162.e33, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805281

RESUMO

BACKGROUND & AIMS: Chromosomal instability (CIN) is a carcinogenesis event that promotes metastasis and resistance to therapy by unclear mechanisms. Expression of the colon cancer-associated transcript 2 gene (CCAT2), which encodes a long noncoding RNA (lncRNA), associates with CIN, but little is known about how CCAT2 lncRNA regulates this cancer enabling characteristic. METHODS: We performed cytogenetic analysis of colorectal cancer (CRC) cell lines (HCT116, KM12C/SM, and HT29) overexpressing CCAT2 and colon organoids from C57BL/6N mice with the CCAT2 transgene and without (controls). CRC cells were also analyzed by immunofluorescence microscopy, γ-H2AX, and senescence assays. CCAT2 transgene and control mice were given azoxymethane and dextran sulfate sodium to induce colon tumors. We performed gene expression array and mass spectrometry to detect downstream targets of CCAT2 lncRNA. We characterized interactions between CCAT2 with downstream proteins using MS2 pull-down, RNA immunoprecipitation, and selective 2'-hydroxyl acylation analyzed by primer extension analyses. Downstream proteins were overexpressed in CRC cells and analyzed for CIN. Gene expression levels were measured in CRC and non-tumor tissues from 5 cohorts, comprising more than 900 patients. RESULTS: High expression of CCAT2 induced CIN in CRC cell lines and increased resistance to 5-fluorouracil and oxaliplatin. Mice that expressed the CCAT2 transgene developed chromosome abnormalities, and colon organoids derived from crypt cells of these mice had a higher percentage of chromosome abnormalities compared with organoids from control mice. The transgenic mice given azoxymethane and dextran sulfate sodium developed more and larger colon polyps than control mice given these agents. Microarray analysis and mass spectrometry indicated that expression of CCAT2 increased expression of genes involved in ribosome biogenesis and protein synthesis. CCAT2 lncRNA interacted directly with and stabilized BOP1 ribosomal biogenesis factor (BOP1). CCAT2 also increased expression of MYC, which activated expression of BOP1. Overexpression of BOP1 in CRC cell lines resulted in chromosomal missegregation errors, and increased colony formation, and invasiveness, whereas BOP1 knockdown reduced viability. BOP1 promoted CIN by increasing the active form of aurora kinase B, which regulates chromosomal segregation. BOP1 was overexpressed in polyp tissues from CCAT2 transgenic mice compared with healthy tissue. CCAT2 lncRNA and BOP1 mRNA or protein were all increased in microsatellite stable tumors (characterized by CIN), but not in tumors with microsatellite instability compared with nontumor tissues. Increased levels of CCAT2 lncRNA and BOP1 mRNA correlated with each other and with shorter survival times of patients. CONCLUSIONS: We found that overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1 an activator of aurora kinase B. Strategies to target this pathway might be developed for treatment of patients with microsatellite stable colorectal tumors.


Assuntos
Instabilidade Cromossômica , Neoplasias Colorretais/genética , Neoplasias Experimentais/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aurora Quinase B/metabolismo , Azoximetano/toxicidade , Carcinogênese/genética , Linhagem Celular Tumoral , Colo/citologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Análise Citogenética , Dextranos/toxicidade , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/patologia , Organoides , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética
10.
Cancer Cell ; 37(5): 720-734.e13, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32359397

RESUMO

Renal medullary carcinoma (RMC) is a highly lethal malignancy that mainly afflicts young individuals of African descent and is resistant to all targeted agents used to treat other renal cell carcinomas. Comprehensive genomic and transcriptomic profiling of untreated primary RMC tissues was performed to elucidate the molecular landscape of these tumors. We found that RMC was characterized by high replication stress and an abundance of focal copy-number alterations associated with activation of the stimulator of the cyclic GMP-AMP synthase interferon genes (cGAS-STING) innate immune pathway. Replication stress conferred a therapeutic vulnerability to drugs targeting DNA-damage repair pathways. Elucidation of these previously unknown RMC hallmarks paves the way to new clinical trials for this rare but highly lethal malignancy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Medular/patologia , Carcinoma de Células Renais/patologia , Aberrações Cromossômicas , Replicação do DNA , Neoplasias Renais/patologia , Proteína SMARCB1/metabolismo , Adulto , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Medular/genética , Carcinoma Medular/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Proliferação de Células , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína SMARCB1/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Cancer ; 145(8): 2249-2259, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31020641

RESUMO

Though human prostate cancer (PCa) heterogeneity can best be studied using multiple cell types isolated from clinical specimens, the difficulty of establishing cell lines from clinical tumors has hampered this approach. In this proof-of-concept study, we established a human PCa cell line from a prostatectomy surgical specimen without the need for retroviral transduction. In a previous report, we characterized the stromal cells derived from PCa specimens. Here, we characterized the epithelial cells isolated from the same tumors. Compared to the ease of establishing prostate stromal cell lines, prostatic epithelial cell lines are challenging. From three matched pairs of normal and tumor tissues, we established one new PCa cell line, HPE-15. We confirmed the origin of HPE-15 cells by short tandem repeat microsatellite polymorphism analysis. HPE-15 cells are androgen-insensitive and express marginal androgen receptor, prostate-specific antigen and prostate-specific membrane antigen proteins. HPE-15 expresses luminal epithelial markers of E-cadherin and cytokeratin 18, basal cell markers of cytokeratin 5 and p63 and neuroendocrine marker of chromogranin A. Interestingly, HPE-15 Cells exhibited no tumorigenicity in different strains of immune-deficient mice but can become tumorigenic through interaction with aggressive cancer cell types. HPE-15 cells can thus serve as an experimental model for the study of PCa progression, metastasis and tumor cell dormancy.


Assuntos
Células Epiteliais/citologia , Mesoderma/citologia , Próstata/citologia , Neoplasias da Próstata/patologia , Células Estromais/citologia , Animais , Carcinogênese , Comunicação Celular , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Humanos , Calicreínas/metabolismo , Masculino , Mesoderma/metabolismo , Camundongos , Próstata/metabolismo , Antígeno Prostático Específico/metabolismo , Prostatectomia , Neoplasias da Próstata/metabolismo , Células Estromais/metabolismo , Transplante Heterólogo , Células Tumorais Cultivadas
12.
Blood ; 133(21): 2320-2324, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30745304

RESUMO

Bone marrow (BM) sclerosis is commonly found in patients with late-stage myelofibrosis (MF). Because osteoclasts (OCs) and osteoblasts play a key role in bone remodeling, and MF monocytes, the OC precursors, are derived from the neoplastic clone, we wondered whether decreased OC numbers or impairment in their osteolytic function affects the development of osteosclerosis. Analysis of BM biopsies from 50 MF patients showed increased numbers of multinucleated tartrate-resistant acid phosphatase (TRAP)/cathepsin K+ OCs expressing phosphorylated Janus kinase 2 (JAK2). Randomly microdissected TRAP+ OCs from 16 MF patients harbored JAK2 or calreticulin (CALR) mutations, confirming MF OCs are clonal. To study OC function, CD14+ monocytes from MF patients and healthy individuals were cultured and differentiated into OCs. Unlike normal OCs, MF OCs appeared small and round, with few protrusions, and carried the mutations and chromosomal abnormalities of neoplastic clones. In addition, MF OCs lacked F-actin-rich ring-like structures and had fewer nuclei and reduced colocalization signals, compatible with decreased fusion events, and their mineral resorption capacity was significantly reduced, indicating impaired osteolytic function. Taken together, our data suggest that, although the numbers of MF OCs are increased, their impaired osteolytic activity distorts bone remodeling and contributes to the induction of osteosclerosis.


Assuntos
Remodelação Óssea , Osteoclastos , Osteólise , Mielofibrose Primária , Calreticulina/metabolismo , Catepsina K/genética , Catepsina K/metabolismo , Feminino , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Mutação , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteólise/genética , Osteólise/metabolismo , Osteólise/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Fosfatase Ácida Resistente a Tartarato/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo
13.
Cell Host Microbe ; 24(3): 392-404.e8, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30173955

RESUMO

HIV-1 integration into the host genome favors actively transcribed genes. Prior work indicated that the nuclear periphery provides the architectural basis for integration site selection, with viral capsid-binding host cofactor CPSF6 and viral integrase-binding cofactor LEDGF/p75 contributing to selection of individual sites. Here, by investigating the early phase of infection, we determine that HIV-1 traffics throughout the nucleus for integration. CPSF6-capsid interactions allow the virus to bypass peripheral heterochromatin and penetrate the nuclear structure for integration. Loss of interaction with CPSF6 dramatically alters virus localization toward the nuclear periphery and integration into transcriptionally repressed lamina-associated heterochromatin, while loss of LEDGF/p75 does not significantly affect intranuclear HIV-1 localization. Thus, CPSF6 serves as a master regulator of HIV-1 intranuclear localization by trafficking viral preintegration complexes away from heterochromatin at the periphery toward gene-dense chromosomal regions within the nuclear interior.


Assuntos
Capsídeo/metabolismo , Núcleo Celular/virologia , DNA Viral/genética , Infecções por HIV/metabolismo , HIV-1/fisiologia , Integração Viral , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Viral/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligação Proteica , Replicação Viral , Fatores de Poliadenilação e Clivagem de mRNA/genética
14.
Proc Natl Acad Sci U S A ; 114(43): E9086-E9095, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073105

RESUMO

An integrated genomic and functional analysis to elucidate DNA damage signaling factors promoting self-renewal of glioma stem cells (GSCs) identified proliferating cell nuclear antigen (PCNA)-associated factor (PAF) up-regulation in glioblastoma. PAF is preferentially overexpressed in GSCs. Its depletion impairs maintenance of self-renewal without promoting differentiation and reduces tumor-initiating cell frequency. Combined transcriptomic and metabolomic analyses revealed that PAF supports GSC maintenance, in part, by influencing DNA replication and pyrimidine metabolism pathways. PAF interacts with PCNA and regulates PCNA-associated DNA translesion synthesis (TLS); consequently, PAF depletion in combination with radiation generated fewer tumorspheres compared with radiation alone. Correspondingly, pharmacological impairment of DNA replication and TLS phenocopied the effect of PAF depletion in compromising GSC self-renewal and radioresistance, providing preclinical proof of principle that combined TLS inhibition and radiation therapy may be a viable therapeutic option in the treatment of glioblastoma multiforme (GBM).


Assuntos
Neoplasias Encefálicas/radioterapia , Proteínas de Transporte/genética , Glioblastoma/radioterapia , Células-Tronco Neoplásicas/efeitos da radiação , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Pirimidinas/biossíntese , Tolerância a Radiação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Methods Mol Biol ; 1587: 127-131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28324504

RESUMO

Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by the removal of telomere-binding proteins are recognized as double-stranded breaks (DSBs). Repair of DSBs is crucial for the maintenance of genome stability. In mammals, DSBs are repaired by either error-prone nonhomologous end joining (NHEJ) or error-free homologous recombination (HR) and can be visualized as chromosomal fusions.


Assuntos
Telômero/genética , Animais , Células Cultivadas , Análise Citogenética/métodos , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Camundongos , Telomerase/genética
16.
Mol Syst Biol ; 13(2): 914, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202506

RESUMO

Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.


Assuntos
Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica/métodos , Glicólise , Neoplasias/genética , Linhagem Celular Tumoral , Evolução Molecular , Amplificação de Genes , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Redes e Vias Metabólicas , Análise de Componente Principal , Seleção Genética
17.
J Pathol ; 241(1): 67-79, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27741356

RESUMO

The gene encoding migration and invasion inhibitory protein (MIIP), located on 1p36.22, is a potential tumour suppressor gene in glioma. In this study, we aimed to explore the role and mechanism of action of MIIP in colorectal cancer (CRC). MIIP protein expression gradually decreased along the colorectal adenoma-carcinoma sequence and was negatively correlated with lymph node and distant metastasis in 526 colorectal tissue samples (p < 0.05 for all). Analysis of The Cancer Genome Atlas (TCGA) data showed that decreased MIIP expression was significantly associated with MIIP hemizygous deletion (p = 0.0005), which was detected in 27.7% (52/188) of CRC cases, and associated with lymph node and distant metastasis (p < 0.05 for both). We deleted one copy of the MIIP gene in HCT116 CRC cells using zinc finger nuclease technology and demonstrated that MIIP haploinsufficiency resulted in increased colony formation and cell migration and invasion, which was consistent with the results from siRNA-mediated MIIP knockdown in two CRC cell lines (p < 0.05 for all). Moreover, MIIP haploinsufficiency promoted CRC progression in vivo (p < 0.05). Genomic instability and spectral karyotyping assays demonstrated that MIIP haploinsufficiency induced chromosomal instability (CIN). Besides modulating the downstream proteins of APC/CCdc20 , securin and cyclin B1, MIIP haploinsufficiency inhibited topoisomerase II (Topo II) activity and induced chromosomal missegregation. Therefore, we report that MIIP is a novel potential tumour suppressor gene in CRC. Moreover, we characterized the MIIP gene as a novel CIN suppressor gene, through altering the stability of mitotic checkpoint proteins and disturbing Topo II activity. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma/genética , Proteínas de Transporte/genética , Instabilidade Cromossômica/genética , Neoplasias Colorretais/genética , Haploinsuficiência/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Animais , Proteínas de Transporte/biossíntese , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Regulação para Baixo/genética , Feminino , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Ensaio Tumoral de Célula-Tronco
18.
Cancer ; 123(7): 1115-1123, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27893937

RESUMO

BACKGROUND: The 2013 testing guidelines for determining the human epidermal growth factor receptor 2 (HER2) status include new cutoff points for the HER2/chromosome enumeration probe 17 (CEP17) ratio and the average HER2 copy number per cell, and they recommend using a reflex test with alternative chromosome 17 probes (Ch17Ps) to resolve equivocal HER2 results. This study sought to determine the clinical utility of alternative Ch17Ps in equivocal cases and the effects of equivocal results and/or a change in the HER2 status on patients' outcomes. METHODS: The University of Texas MD Anderson Cancer Center database of HER2 dual-probe fluorescence in situ hybridization results from 2000 to 2010 was searched for cases of invasive breast cancer with HER2/CEP17 ratios < 2 and average HER2 copy numbers < 6 per cell. Cases with HER2 copy numbers of 4 to < 6 (the definition of equivocal HER2 results) were analyzed with alternative Ch17Ps for Smith-Magenis syndrome and retinoic acid receptor α genes. Disease-free survival (DFS) and overall survival (OS) were evaluated with respect to the HER2 copy number with multivariate Cox proportional hazards regression. RESULTS: Among the 3630 patients meeting the inclusion criteria, 137 (4%) had equivocal HER2 results. With alternative Ch17Ps, 35 of 57 equivocal HER2 cases (61%) were upgraded to a positive HER2 status, and 22 cases (39%) remained unchanged. The 5-year DFS and OS adjusted hazard ratios (HRs) for copy numbers of 4 to < 6 versus < 4 were 0.6 (95% confidence interval [CI], 0.3-1.2) and 0.5 (95% CI, 0.2-1.0) with P values of .16 and .66, respectively. In comparison with HER2-negative cases, these CIs indicated that equivocal HER2 results were associated with either a protective effect (HR, < 0.5) or no effect (HR, 1.0). CONCLUSIONS: These findings rule out a significant deleterious effect of equivocal HER2 results. Alternative Ch17Ps may erroneously upgrade the HER2 status; therefore, they cannot be considered reliable in clinical practice. Cancer 2017;123:1115-1123. © 2016 American Cancer Society.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Cromossomos Humanos Par 17/genética , Receptor ErbB-2/genética , Neoplasias da Mama/diagnóstico , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Estimativa de Kaplan-Meier , Prognóstico
19.
J Exp Med ; 213(9): 1723-40, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27481130

RESUMO

Primary myelofibrosis (PMF) is a fatal neoplastic disease characterized by clonal myeloproliferation and progressive bone marrow (BM) fibrosis thought to be induced by mesenchymal stromal cells stimulated by overproduced growth factors. However, tissue fibrosis in other diseases is associated with monocyte-derived fibrocytes. Therefore, we sought to determine whether fibrocytes play a role in the induction of BM fibrosis in PMF. In this study, we show that BM from patients with PMF harbors an abundance of clonal, neoplastic collagen- and fibronectin-producing fibrocytes. Immunodeficient mice transplanted with myelofibrosis patients' BM cells developed a lethal myelofibrosis-like phenotype. Treatment of the xenograft mice with the fibrocyte inhibitor serum amyloid P (SAP; pentraxin-2) significantly prolonged survival and slowed the development of BM fibrosis. Collectively, our data suggest that neoplastic fibrocytes contribute to the induction of BM fibrosis in PMF, and inhibiting fibrocyte differentiation with SAP may interfere with this process.


Assuntos
Fibroblastos/fisiologia , Monócitos/citologia , Mielofibrose Primária/etiologia , Animais , Medula Óssea/patologia , Transplante de Medula Óssea , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibrose , Proteínas de Homeodomínio/farmacologia , Humanos , Camundongos , Camundongos SCID , Nitrilas , Mielofibrose Primária/patologia , Pirazóis/farmacologia , Pirimidinas , Proteínas Recombinantes/farmacologia , Componente Amiloide P Sérico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...