Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nondestr Eval ; 41(1): 22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221413

RESUMO

The determination of the mechanical properties of materials is predominantly undertaken using destructive approaches. Such approaches are based on well-established mathematical formulations where a physical property of the material is measured as a function of an input under controlled conditions provided by some machine, such as load-displacement curves in indentation tests and stress-strain plots in tensile testing. The main disadvantage of these methods is that they involve destruction of samples as they are usually tested to failure to determine the properties of interest. This means that large sample sizes are required to obtain statistical certainty, a condition that, depending on the material, may mean the process is both time consuming and expensive. In addition, for rapid prototyping and small-batch manufacturing of polymers, these techniques may be inappropriate either due to excessive cost or high polymer composition variability between batches. In this paper we discuss how the Euler-Bernoulli beam theory can be exploited for experimental, non-destructive assessment of the mechanical properties of three different 3D-printed materials: a plastic, an elastomer, and a hydrogel. We demonstrate applicability of the approach for materials, which vary by several orders of magnitude of Young's moduli, by measuring the resonance frequencies of appended rectangular cantilevers using laser Doppler vibrometry. The results indicate that experimental determination of the resonance frequency can be used to accurately determine the exact elastic modulus of any given 3D-printed component. We compare the obtained results with those obtained by tensile testing for comparison and validation.

2.
Interface Focus ; 1(4): 520-39, 2011 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22866229

RESUMO

Ultrasound provides a valuable tool for medical diagnosis offering real-time imaging with excellent spatial resolution and low cost. The advent of microbubble contrast agents has provided the additional ability to obtain essential quantitative information relating to tissue vascularity, tissue perfusion and even endothelial wall function. This technique has shown great promise for diagnosis and monitoring in a wide range of clinical conditions such as cardiovascular diseases and cancer, with considerable potential benefits in terms of patient care. A key challenge of this technique, however, is the existence of significant variations in the imaging results, and the lack of understanding regarding their origin. The aim of this paper is to review the potential sources of variability in the quantification of tissue perfusion based on microbubble contrast-enhanced ultrasound images. These are divided into the following three categories: (i) factors relating to the scanner setting, which include transmission power, transmission focal depth, dynamic range, signal gain and transmission frequency, (ii) factors relating to the patient, which include body physical differences, physiological interaction of body with bubbles, propagation and attenuation through tissue, and tissue motion, and (iii) factors relating to the microbubbles, which include the type of bubbles and their stability, preparation and injection and dosage. It has been shown that the factors in all the three categories can significantly affect the imaging results and contribute to the variations observed. How these factors influence quantitative imaging is explained and possible methods for reducing such variations are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA