Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740102

RESUMO

Defective mitochondria and autophagy, as well as accumulation of lipid and iron in WDR45 mutant fibroblasts, is related to beta-propeller protein-associated neurodegeneration (BPAN). In this study, we found that enlarged lysosomes in cells derived from patients with BPAN had low enzyme activity, and most of the enlarged lysosomes had an accumulation of iron and oxidized lipid. Cryo-electron tomography revealed elongated lipid accumulation, and spectrometry-based elemental analysis showed that lysosomal iron and oxygen accumulation superimposed with lipid aggregates. Lysosomal lipid aggregates superimposed with autofluorescence as free radical generator, lipofuscin. To eliminate free radical stress by iron accumulation in cells derived from patients with BPAN, we investigated the effects of the iron chelator, 2,2'-bipyridine (bipyridyl, BIP). To study whether the defects in patient-derived cells can be rescued by an iron chelator BIP, we tested whether the level of iron and reactive oxygen species (ROS) in the cells and genes related to oxidative stress were rescued BIP treatment. Although BIP treatment decreased some iron accumulation in the cytoplasm and mitochondria, the accumulation of iron in the lysosomes and levels of cellular ROS were unaffected. In addition, the change of specific RNA levels related to free radical stress in patient fibroblasts was not rescued by BIP. To alleviate free radical stress, we investigated whether L-serine can regulate abnormal structures in cells derived from patients with BPAN through the regulation of free radical stress. L-serine treatment alleviated increase of enlarged lysosomes and iron accumulation and rescued impaired lysosomal activity by reducing oxidized lipid accumulation in the lysosomes of the cells. Lamellated lipids in the lysosomes of the cells were identified as lipofuscin through correlative light and electron microscopy, and L-serine treatment reduced the increase of lipofuscin. These data suggest that L-serine reduces oxidative stress-mediated lysosomal lipid oxidation and iron accumulation by rescuing lysosomal activity.

2.
Cell Chem Biol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38513646

RESUMO

Fluorescent tagging of biomolecules enables their sensitive detection during separation and determining their subcellular location. In this context, peroxidase-based reactions are actively utilized for signal amplification. To harness this potential, we developed a genetically encodable enzymatic fluorescence signal amplification method using APEX (FLEX). We synthesized a fluorescent probe, Jenfluor triazole (JFT1), which effectively amplifies and restricts fluorescence signals under fixed conditions, enabling fluorescence-based detection of subcellularly localized electron-rich metabolites. Moreover, JFT1 exhibited stable fluorescence signals even under osmium-treated and polymer-embedded conditions, which supported findings from correlative light and electron microscopy (CLEM) using APEX. Using various APEX-conjugated proteins of interest (POIs) targeted to different organelles, we successfully visualized their localization through FLEX imaging while effectively preserving organelle ultrastructures. FLEX provides insights into dynamic lysosome-mitochondria interactions upon exposure to chemical stressors. Overall, FLEX holds significant promise as a sensitive and versatile system for fluorescently detecting APEX2-POIs in multiscale biological samples.

3.
Nat Commun ; 15(1): 1851, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424052

RESUMO

Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report "OrthoID", a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were-to the best of our knowledge-previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy. These findings demonstrate that OrthoID could be a powerful proteomics tool for the identification and analysis of spatiotemporal proteins at organelle contact sites and revealing their dynamic behaviors in vital cellular processes.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Proteômica/métodos , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo
4.
Antioxidants (Basel) ; 13(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247533

RESUMO

The process of cellular senescence, which is characterized by stable cell cycle arrest, is strongly associated with dysfunctional cellular metabolism and circadian rhythmicity, both of which are reported to result from and also be causal to cellular senescence. As a result, modifying any of them-senescence, metabolism, or the circadian clock-may affect all three simultaneously. Obesity accelerates aging by disrupting the homeostasis of reactive oxygen species (ROS) via an increased mitochondrial burden of fatty acid oxidation. As a result, if senescence, metabolism, and circadian rhythm are all linked, anti-obesity treatments may improve metabolic regulation while also alleviating senescence and circadian rhythm. Vutiglabridin is a small molecule in clinical trials that improves obesity by enhancing mitochondrial function. We found that chronic treatment of senescent primary human dermal fibroblasts (HDFs) with vutiglabridin alleviates all investigated markers of cellular senescence (SA-ß-gal, CDKN1A, CDKN2A) and dysfunctional cellular circadian rhythm (BMAL1) while remarkably preventing the alterations of mitochondrial function and structure that occur during the process of cellular senescence. Our results demonstrate the significant senescence-alleviating effects of vutiglabridin, specifically with the restoration of cellular circadian rhythmicity and metabolic regulation. These data support the potential development of vutiglabridin against aging-associated diseases and corroborate the intricate link between cellular senescence, metabolism, and the circadian clock.

5.
Nat Chem Biol ; 20(2): 221-233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884807

RESUMO

Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.


Assuntos
Oxirredutases , Ubiquinona , Animais , Camundongos , Drosophila melanogaster , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma , Ubiquinona/metabolismo , Proteínas de Transporte
6.
bioRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38014048

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a central role in microglial biology and the pathogenesis of Alzheimer's disease (AD). Besides DNAX-activating protein 12 (DAP12), a communal adaptor for TREM2 and many other receptors, other cellular interactors of TREM2 remain largely elusive. We employed a 'proximity labeling' approach using a biotin ligase, TurboID, for mapping protein-protein interactions in live mammalian cells. We discovered novel TREM2-proximal proteins with diverse functions, including those localized to the Mitochondria-ER contact sites (MERCs), a dynamic subcellular 'hub' implicated in a number of crucial cell physiology such as lipid metabolism. TREM2 deficiency alters the thickness (inter-organelle distance) of MERCs, a structural parameter of metabolic state, in microglia derived from human induced pluripotent stem cells. Our TurboID-based TREM2 interactome study suggest novel roles for TREM2 in the structural plasticity of the MERCs, raising the possibility that dysregulation of MERC-related TREM2 functions contribute to AD pathobiology.

7.
Dev Cell ; 58(19): 1950-1966.e8, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37816329

RESUMO

Newly synthesized proteins in the endoplasmic reticulum (ER) are sorted by coat protein complex II (COPII) at the ER exit site en route to the Golgi. Under cellular stresses, COPII proteins become targets of regulation to control the transport. Here, we show that the COPII outer coat proteins Sec31 and Sec13 are selectively sequestered into the biomolecular condensate of SCOTIN/SHISA-5, which interferes with COPII vesicle formation and inhibits ER-to-Golgi transport. SCOTIN is an ER transmembrane protein with a cytosolic intrinsically disordered region (IDR), which is required and essential for the formation of condensates. Upon IFN-γ stimulation, which is a cellular condition that induces SCOTIN expression and condensation, ER-to-Golgi transport was inhibited in a SCOTIN-dependent manner. Furthermore, cancer-associated mutations of SCOTIN perturb its ability to form condensates and control transport. Together, we propose that SCOTIN impedes the ER-to-Golgi transport through its ability to form biomolecular condensates at the ER membrane.


Assuntos
Retículo Endoplasmático , Proteínas de Transporte Vesicular , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Transporte Proteico/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo
8.
Cell Rep ; 42(8): 112835, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37478010

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in human cells by interacting with host factors following infection. To understand the virus and host interactome proximity, we introduce a super-resolution proximity labeling (SR-PL) method with a "plug-and-playable" PL enzyme, TurboID-GBP (GFP-binding nanobody protein), and we apply it for interactome mapping of SARS-CoV-2 ORF3a and membrane protein (M), which generates highly perturbed endoplasmic reticulum (ER) structures. Through SR-PL analysis of the biotinylated interactome, 224 and 272 peptides are robustly identified as ORF3a and M interactomes, respectively. Within the ORF3a interactome, RNF5 co-localizes with ORF3a and generates ubiquitin modifications of ORF3a that can be involved in protein degradation. We also observe that the SARS-CoV-2 infection rate is efficiently reduced by the overexpression of RNF5 in host cells. The interactome data obtained using the SR-PL method are presented at https://sarscov2.spatiomics.org. We hope that our method will contribute to revealing virus-host interactions of other viruses in an efficient manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Antivirais/metabolismo , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo
9.
EMBO Rep ; 24(8): e56538, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37377038

RESUMO

The ER regulates the spatiotemporal organization of endolysosomal systems by membrane contact. In addition to tethering via heterotypic interactions on both organelles, we present a novel ER-endosome tethering mechanism mediated by homotypic interactions. The single-pass transmembrane protein SCOTIN is detected in the membrane of the ER and endosomes. In SCOTIN-knockout (KO) cells, the ER-late endosome contacts are reduced, and the perinuclear positioning of endosomes is disturbed. The cytosolic proline-rich domain (PRD) of SCOTIN forms homotypic assemblies in vitro and is necessary for ER-endosome membrane tethering in cells. A region of 28 amino acids spanning 150-177 within the SCOTIN PRD is essential to elicit membrane tethering and endosomal dynamics, as verified by reconstitution in SCOTIN-KO cells. The assembly of SCOTIN (PRD) is sufficient to mediate membrane tethering, as purified SCOTIN (PRD), but not SCOTIN (PRDΔ150-177), brings two different liposomes closer in vitro. Using organelle-specific targeting of a chimeric PRD domain shows that only the presence on both organellar membranes enables the ER-endosome membrane contact, indicating that the assembly of SCOTIN on heterologous membranes mediates organelle tethering.


Assuntos
Retículo Endoplasmático , Membranas Intracelulares , Membranas Intracelulares/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Endossomos/metabolismo
10.
Nat Commun ; 14(1): 3746, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353518

RESUMO

Brown adipose tissue (BAT) has abundant mitochondria with the unique capability of generating heat via uncoupled respiration. Mitochondrial uncoupling protein 1 (UCP1) is activated in BAT during cold stress and dissipates mitochondrial proton motive force generated by the electron transport chain to generate heat. However, other mitochondrial factors required for brown adipocyte respiration and thermogenesis under cold stress are largely unknown. Here, we show LETM1 domain-containing protein 1 (LETMD1) is a BAT-enriched and cold-induced protein required for cold-stimulated respiration and thermogenesis of BAT. Proximity labeling studies reveal that LETMD1 is a mitochondrial matrix protein. Letmd1 knockout male mice display aberrant BAT mitochondria and fail to carry out adaptive thermogenesis under cold stress. Letmd1 knockout BAT is deficient in oxidative phosphorylation (OXPHOS) complex proteins and has impaired mitochondrial respiration. In addition, BAT-specific Letmd1 deficient mice exhibit phenotypes identical to those observed in Letmd1 knockout mice. Collectively, we demonstrate that the BAT-enriched mitochondrial matrix protein LETMD1 plays a tissue-autonomous role that is essential for BAT mitochondrial function and thermogenesis.


Assuntos
Tecido Adiposo Marrom , Proteínas Mitocondriais , Termogênese , Animais , Masculino , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Nat Commun ; 14(1): 1703, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973273

RESUMO

Ca2+ overload-induced mitochondrial dysfunction is considered as a major contributing factor in the pathogenesis of alcohol-associated liver disease (ALD). However, the initiating factors that drive mitochondrial Ca2+ accumulation in ALD remain elusive. Here, we demonstrate that an aberrant increase in hepatic GRP75-mediated mitochondria-associated ER membrane (MAM) Ca2+-channeling (MCC) complex formation promotes mitochondrial dysfunction in vitro and in male mouse model of ALD. Unbiased transcriptomic analysis reveals PDK4 as a prominently inducible MAM kinase in ALD. Analysis of human ALD cohorts further corroborate these findings. Additional mass spectrometry analysis unveils GRP75 as a downstream phosphorylation target of PDK4. Conversely, non-phosphorylatable GRP75 mutation or genetic ablation of PDK4 prevents alcohol-induced MCC complex formation and subsequent mitochondrial Ca2+ accumulation and dysfunction. Finally, ectopic induction of MAM formation reverses the protective effect of PDK4 deficiency in alcohol-induced liver injury. Together, our study defines a mediatory role of PDK4 in promoting mitochondrial dysfunction in ALD.


Assuntos
Retículo Endoplasmático , Hepatopatias , Camundongos , Animais , Masculino , Humanos , Retículo Endoplasmático/metabolismo , Mitocôndrias , Hepatopatias/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119428, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610614

RESUMO

Peroxidase is a heme-containing enzyme that reduces hydrogen peroxide to water by extracting electron(s) from aromatic compounds via a sequential turnover reaction. This reaction can generate various aromatic radicals in the form of short-lived "spray" molecules. These can be either covalently attached to proximal proteins or polymerized via radical-radical coupling. Recent studies have shown that these peroxidase-generated radicals can be utilized as effective tools for spatial research in biological systems, including imaging studies aimed at the spatial localization of proteins using electron microscopy, spatial proteome mapping, and spatial sensing of metabolites (e.g., heme and hydrogen peroxide). This review may facilitate the wider utilization of these peroxidase-based methods for spatial discovery in cellular biology.


Assuntos
Peróxido de Hidrogênio , Peroxidases , Peroxidases/metabolismo , Heme/metabolismo , Biologia
13.
Appl Microsc ; 53(1): 1, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626017

RESUMO

Oxidative stress destroys cellular organelles and damages DNA, eventually leading to degenerative brain disorders. Persistent mitochondrial damage by oxidative stress eventually causes cells to inhibit the function of lysosomes. Rotenone used in this study inhibits complex 1 of the mitochondrial electron transport chain. Due to this inhibition, the production of free radicals is promoted, and oxidative stress can occur. To test as a role of antioxidant, L-serine was treated before treatment of rotenone to HT22 hippocampal cells. Then, changes in the activity and structure of lysosomes were analyzed. As a result, the oxidative stress caused by rotenone in HT22 cells was protected by L-serine. L-serine reduced free radicals in cells, and the damaged lysosomal structure and lysosome activity were also protected.

14.
Proc Natl Acad Sci U S A ; 120(4): e2208425120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669119

RESUMO

Recurrent spillovers of α- and ß-coronaviruses (CoV) such as severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome-CoV, SARS-CoV-2, and possibly human CoV have caused serious morbidity and mortality worldwide. In this study, six receptor-binding domains (RBDs) derived from α- and ß-CoV that are considered to have originated from animals and cross-infected humans were linked to a heterotrimeric scaffold, proliferating cell nuclear antigen (PCNA) subunits, PCNA1, PCNA2, and PCNA3. They assemble to create a stable mosaic multivalent nanoparticle, 6RBD-np, displaying a ring-shaped disk with six protruding antigens, like jewels in a crown. Prime-boost immunizations with 6RBD-np in mice induced significantly high Ab titers against RBD antigens derived from α- and ß-CoV and increased interferon (IFN-γ) production, with full protection against the SARS-CoV-2 wild type and Delta challenges. The mosaic 6RBD-np has the potential to induce intergenus cross-reactivity and to be developed as a pan-CoV vaccine against future CoV spillovers.


Assuntos
COVID-19 , Nanopartículas , Humanos , Animais , Camundongos , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
15.
Autophagy ; 19(5): 1424-1443, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36250672

RESUMO

ABBREVIATIONS: A:C autophagic membrane:cytosol; ALS amyotrophic lateral sclerosis; ATG4 autophagy related 4; Atg8 autophagy related 8; BafA1 bafilomycin A1; BNIP3L/Nix BCL2 interacting protein 3 like; CALCOCO2/NDP52 calcium binding and coiled-coil domain 2; EBSS Earle's balanced salt solution; GABARAP GABA type A receptor-associated protein; GST glutathione S transferase; HKO hexa knockout; Kd dissociation constant; LIR LC3-interacting region; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; NLS nuclear localization signal/sequence; PE phosphatidylethanolamine; SpHfl1 Schizosaccharomyces pombeorganic solute transmembrane transporter; SQSTM1/p62 SQSTM1/p62; TARDBP/TDP-43 TAR DNA binding protein; TKO triple knockout.


Assuntos
Autofagia , Proteínas de Membrana , Animais , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Membrana/metabolismo , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mamíferos/metabolismo
16.
Sci Adv ; 8(43): eabk1239, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306352

RESUMO

Amphibians and fish show considerable regeneration potential via dedifferentiation of somatic cells into blastemal cells. In terms of dedifferentiation, in vitro cellular reprogramming has been proposed to share common processes with in vivo tissue regeneration, although the details are elusive. Here, we identified the cytoskeletal linker protein desmoplakin (Dsp) as a common factor mediating both reprogramming and regeneration. Our analysis revealed that Dsp expression is elevated in distinct intermediate cells during in vitro reprogramming. Knockdown of Dsp impedes in vitro reprogramming into induced pluripotent stem cells and induced neural stem/progenitor cells as well as in vivo regeneration of zebrafish fins. Notably, reduced Dsp expression impairs formation of the intermediate cells during cellular reprogramming and tissue regeneration. These findings suggest that there is a Dsp-mediated evolutionary link between cellular reprogramming in mammals and tissue regeneration in lower vertebrates and that the intermediate cells may provide alternative approaches for mammalian regenerative therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Animais , Reprogramação Celular/genética , Desmoplaquinas/genética , Peixe-Zebra , Mamíferos
17.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142514

RESUMO

L-serine is a non-essential amino acid endogenously produced by astrocytes and is abundant in human diets. Beneficial roles of the metabolic products from L-serine in various conditions in the brain including neuronal development have been reported. Through several preclinical studies, L-serine treatment was also shown to offer beneficial therapeutic effects for brain damage such as ischemic stroke, amyotrophic lateral sclerosis, and Parkinson's disease. Despite evidence for the value of L-serine in the clinic, however, its beneficial effects on the propionic acid (PPA)-induced neuronal toxicity and underlying mechanisms of L-serine-mediated neuroprotection are unknown. In this study, we observed that PPA-induced acidic stress induces abnormal lipid accumulation and functional defects in lysosomes of hippocampal neurons. L-serine treatment was able to rescue the structure and function of lysosomes in PPA-treated hippocampal neuronal cells. We further identified that L-serine suppressed the formation of lipid droplets and abnormal lipid membrane accumulations inside the lysosomes in PPA-treated hippocampal neuronal cells. Taken together, these findings indicate that L-serine can be utilized as a neuroprotective agent for the functionality of lysosomes through restoration of cathepsin D in disease conditions.


Assuntos
Catepsina D , Fármacos Neuroprotetores , Catepsina D/metabolismo , Humanos , Lisossomos/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Propionatos/farmacologia , Serina/metabolismo , Serina/farmacologia
18.
Front Oncol ; 12: 976407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176383

RESUMO

Extracellular vesicles (EVs) derived from urine are promising tools for the diagnosis of urogenital cancers. Urinary EVs (uEVs) are considered potential biomarkers for bladder cancer (BC) because urine is in direct contact with the BC tumor microenvironment and thus reflects the current state of the disease. However, challenges associated with the effective isolation and analysis of uEVs complicate the clinical detection of uEV-associated protein biomarkers. Herein, we identified uEV-derived alpha-2-macroglobulin (a2M) as a novel diagnostic biomarker for BC through comparative analysis of uEVs obtained from patients with BC pre- and post-operation using an antibody array. Furthermore, enzyme-linked immunosorbent assay of uEVs isolated from patients with BC (n=60) and non-cancer control subjects (n=23) validated the significant upregulation of a2M expression in patient uEVs (p<0.0001). There was no significant difference in whole urine a2M levels between patients with BC and controls (p=0.317). We observed that compared to classical differential centrifugation, ExoDisc, a centrifugal microfluidic tangential flow filtration device, was a significantly more effective separation method for uEV protein analysis. We expect that our approach for EV analysis will provide an efficient route for the identification of clinically meaningful uEV-based biomarkers for cancer diagnosis.

19.
Proc Natl Acad Sci U S A ; 119(34): e2120157119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969774

RESUMO

Dynamic regulation of mitochondrial morphology provides cells with the flexibility required to adapt and respond to electron transport chain (ETC) toxins and mitochondrial DNA-linked disease mutations, yet the mechanisms underpinning the regulation of mitochondrial dynamics machinery by these stimuli is poorly understood. Here, we show that pyruvate dehydrogenase kinase 4 (PDK4) is genetically required for cells to undergo rapid mitochondrial fragmentation when challenged with ETC toxins. Moreover, PDK4 overexpression was sufficient to promote mitochondrial fission even in the absence of mitochondrial stress. Importantly, we observed that the PDK4-mediated regulation of mitochondrial fission was independent of its canonical function, i.e., inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Phosphoproteomic screen for PDK4 substrates, followed by nonphosphorylatable and phosphomimetic mutations of the PDK4 site revealed cytoplasmic GTPase, Septin 2 (SEPT2), as the key effector molecule that acts as a receptor for DRP1 in the outer mitochondrial membrane to promote mitochondrial fission. Conversely, inhibition of the PDK4-SEPT2 axis could restore the balance in mitochondrial dynamics and reinvigorates cellular respiration in mitochondrial fusion factor, mitofusin 2-deficient cells. Furthermore, PDK4-mediated mitochondrial reshaping limits mitochondrial bioenergetics and supports cancer cell growth. Our results identify the PDK4-SEPT2-DRP1 axis as a regulator of mitochondrial function at the interface between cellular bioenergetics and mitochondrial dynamics.


Assuntos
Dinâmica Mitocondrial , Proteínas Quinases , Respiração Celular/genética , GTP Fosfo-Hidrolases/genética , Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Quinases/metabolismo
20.
Gastroenterology ; 163(1): 239-256, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35461826

RESUMO

BACKGROUND & AIMS: Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production. METHODS: Two models of ERRγ inhibition, GSK5182-treated wild-type mice and ERRγ conditional knock-out (cKO) mice, were established to investigate ERRγ function in the exocrine pancreas. To identify the functional role of ERRγ in pancreatic acinar cells, we performed histologic and transcriptome analysis with the pancreas isolated from ERRγ cKO mice. To determine the relevance of these findings for human disease, we analyzed transcriptome data from multiple independent human cohorts and conducted genetic association studies for ESRRG variants in 2 distinct human pancreatitis cohorts. RESULTS: Blocking ERRγ function in mice by genetic deletion or inverse agonist treatment results in striking pancreatitis-like phenotypes accompanied by inflammation, fibrosis, and cell death. Mechanistically, loss of ERRγ in primary acini abrogates messenger RNA expression and protein levels of mitochondrial oxidative phosphorylation complex genes, resulting in defective acinar cell energetics. Mitochondrial dysfunction due to ERRγ deletion further triggers autophagy dysfunction, endoplasmic reticulum stress, and production of reactive oxygen species, ultimately leading to cell death. Interestingly, ERRγ-deficient acinar cells that escape cell death acquire ductal cell characteristics, indicating a role for ERRγ in acinar-to-ductal metaplasia. Consistent with our findings in ERRγ cKO mice, ERRγ expression was significantly reduced in patients with chronic pancreatitis compared with normal subjects. Furthermore, candidate locus region genetic association studies revealed multiple single nucleotide variants for ERRγ that are associated with chronic pancreatitis. CONCLUSIONS: Collectively, our findings highlight an essential role for ERRγ in maintaining the transcriptional program that supports acinar cell mitochondrial function and organellar homeostasis and provide a novel molecular link between ERRγ and exocrine pancreas disorders.


Assuntos
Pâncreas Exócrino , Pancreatite Crônica , Células Acinares/patologia , Animais , Estrogênios/metabolismo , Humanos , Camundongos , Camundongos Knockout , Pâncreas/patologia , Pâncreas Exócrino/metabolismo , Pancreatite Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...