Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 72: 64-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208233

RESUMO

In the present work, we have studied electron momentum density of CaCO3 using a Compton scattering technique. The experiment has been performed using a 100 mCi (241)Am (59.54 keV) Compton spectrometer. The experimental data have been interpreted in terms of theoretical Compton profiles. To compute the theoretical momentum densities, energy bands and density of states, we have used linear combination of atomic orbitals method as embodied in CRYSTAL09 code. We have used local density approximation, generalized gradient approximation (GGA) and second order GGA (SOGGA) within the frame work of density functional theory. It is seen that the GGA gives a better agreement with the experimental data than other approximations. We have also discussed the energy bands and density of states of CaCO3.

2.
J Phys Condens Matter ; 23(38): 386002, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21900735

RESUMO

The temperature dependent spin momentum densities of Co(1.8)NiGa(1.2) and Co(2)Ni(0.76)Ga(1.24) alloys have been measured using the magnetic Compton scattering technique. The individual contributions of constituents in the formation of the total spin moment are also calculated using Compton line shape analysis. The magnetic Compton data when compared with the magnetization data obtained using a vibrating sample magnetometer show a negligible orbital contribution. The spin moments deduced from the experimental Compton data are compared with the theoretical results obtained from the full potential linearized augmented plane wave method and are found to be in good agreement. The origin of the magnetism in both alloys is also described in terms of the e(g) and t(2g) contributions of Ni and Co.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA