Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1089111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756129

RESUMO

Techniques for studying the clearance of bacterial infections are critical for advances in understanding disease states, immune cell effector functions, and novel antimicrobial therapeutics. Intracellular killing of Staphylococcus aureus by neutrophils can be monitored using a S. aureus strain stably expressing GFP, a fluorophore that is quenched when exposed to the reactive oxygen species (ROS) present in the phagolysosome. Here, we expand upon this method by developing a bi-fluorescent S. aureus killing assay for use in vivo. Conjugating S. aureus with a stable secondary fluorescent marker enables the separation of infected cell samples into three populations: cells that have not engaged in phagocytosis, cells that have engulfed and killed S. aureus, and cells that have viable internalized S. aureus. We identified ATTO647N-NHS Ester as a favorable dye conjugate for generating bi-fluorescent S. aureus due to its stability over time and invariant signal within the neutrophil phagolysosome. To resolve the in vivo utility of ATTO647N/GFP bi-fluorescent S. aureus, we evaluated neutrophil function in a murine model of chronic granulomatous disease (CGD) known to have impaired clearance of S. aureus infection. Analysis of bronchoalveolar lavage (BAL) from animals subjected to pulmonary infection with bi-fluorescent S. aureus demonstrated differences in neutrophil antimicrobial function consistent with the established phenotype of CGD.


Assuntos
Anti-Infecciosos , Doença Granulomatosa Crônica , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Fagocitose , Análise de Célula Única
2.
Am J Respir Cell Mol Biol ; 67(2): 201-214, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35585756

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a particularly deadly form of pulmonary fibrosis of unknown cause. In patients with IPF, high serum and lung concentrations of CHI3L1 (chitinase 3 like 1) can be detected and are associated with poor survival. However, the roles of CHI3L1 in these diseases have not been fully elucidated. We hypothesize that CHI3L1 interacts with CRTH2 (chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells) to stimulate profibrotic macrophage differentiation and the development of pulmonary fibrosis and that circulating blood monocytes from patients with IPF are hyperresponsive to CHI3L1-CRTH2 signaling. We used murine pulmonary fibrosis models to investigate the role of CRTH2 in profibrotic macrophage differentiation and fibrosis development and primary human peripheral blood mononuclear cell culture to detect the difference of monocytes in the responses to CHI3L1 stimulation and CRTH2 inhibition between patients with IPF and normal control subjects. Our results showed that null mutation or small-molecule inhibition of CRTH2 prevents the development of pulmonary fibrosis in murine models. Furthermore, CHI3L1 stimulation induces a greater increase in CD206 expression in IPF monocytes than control monocytes. These results demonstrated that monocytes from patients with IPF appear to be hyperresponsive to CHI3L1 stimulation. These studies support targeting the CHI3L1-CRTH2 pathway as a promising therapeutic approach for IPF and that the sensitivity of blood monocytes to CHI3L1-induced profibrotic differentiation may serve as a biomarker that predicts responsiveness to CHI3L1- or CRTH2-based interventions.


Assuntos
Fibrose Pulmonar Idiopática , Leucócitos Mononucleares , Animais , Fibrose , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão , Macrófagos , Camundongos
3.
J Physiol ; 599(5): 1487-1511, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450094

RESUMO

KEY POINTS: The prevalence of obesity and non-alcoholic fatty liver disease in children is dramatically increasing at the same time as consumption of foods with a high sugar content. Intake of high fructose corn syrup (HFCS) is a possible aetiology as it is thought to be more lipogenic than glucose. In a mouse model, HFCS intake during adolescence increased fat mass and hepatic lipid levels in male and female mice. However, only males showed impaired glucose tolerance. Multiple metabolites including lipids, bile acids, carbohydrates and amino acids were altered in liver in a sex-specific manner at 6 weeks of age. Some of these changes were also present in adulthood even though HFCS exposure ended at 6 weeks. HFCS significantly altered the gut microbiome, which was associated with changes in key microbial metabolites. These results suggest that HFCS intake during adolescence has profound metabolic changes that are linked to changes in the microbiome and these changes are sex-specific. ABSTRACT: The rapid increase in obesity, diabetes and fatty liver disease in children over the past 20 years has been linked to increased consumption of high fructose corn syrup (HFCS), making it essential to determine the short- and long-term effects of HFCS during this vulnerable developmental window. We hypothesized that HFCS exposure during adolescence significantly impairs hepatic metabolic signalling pathways and alters gut microbial composition, contributing to changes in energy metabolism with sex-specific effects. C57bl/6J mice with free access to HFCS during adolescence (3-6 weeks of age) underwent glucose tolerance and body composition testing and hepatic metabolomics, gene expression and triglyceride content analysis at 6 and 30 weeks of age (n = 6-8 per sex). At 6 weeks HFCS-exposed mice had significant increases in fat mass, glucose intolerance, hepatic triglycerides (females) and de novo lipogenesis gene expression (ACC, DGAT, FAS, ChREBP, SCD, SREBP, CPT and PPARα) with sex-specific effects. At 30 weeks, HFCS-exposed mice also had abnormalities in glucose tolerance (males) and fat mass (females). HFCS exposure enriched carbohydrate, amino acid, long chain fatty acid and secondary bile acid metabolism at 6 weeks with changes in secondary bile metabolism at 6 and 30 weeks. Microbiome studies performed immediately before and after HFCS exposure identified profound shifts of microbial species in male mice only. In summary, short-term HFCS exposure during adolescence induces fatty liver, alters important metabolic pathways, some of which continue to be altered in adulthood, and changes the microbiome in a sex-specific manner.


Assuntos
Xarope de Milho Rico em Frutose , Microbiota , Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Frutose , Xarope de Milho Rico em Frutose/efeitos adversos , Metabolismo dos Lipídeos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia
4.
Am J Respir Cell Mol Biol ; 57(6): 662-673, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28763253

RESUMO

Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-ß-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.


Assuntos
Acroleína/efeitos adversos , Lesão Pulmonar Aguda/tratamento farmacológico , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcisteína/farmacologia , Acroleína/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Células Endoteliais/patologia , Endotélio Vascular/patologia , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/patologia , Consumo de Oxigênio/efeitos dos fármacos
5.
J Biol Chem ; 287(9): 6230-9, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22223647

RESUMO

The transcription factor NF-κB regulates the cellular response to inflammatory and oxidant stress. Although many studies have evaluated NF-κB activity following exposure to oxidative stress, the role of the IκB family of inhibitory proteins in modulating this activity remains unclear. Specifically, the function of IκBß in mediating the cellular response to oxidative stress has not been evaluated. We hypothesized that blocking oxidative stress-induced NF-κB signaling through IκBß would prevent apoptotic cell death. Using IκBß knock-in mice (AKBI), in which the IκBα gene is replaced with the IκBß cDNA, we show that IκBß overexpression prevented oxidative stress-induced apoptotic cell death. This was associated with retention of NF-κB subunits in the nucleus and maintenance of NF-κB activity. Furthermore, the up-regulation of pro-apoptotic genes in WT murine embryonic fibroblasts (MEFs) exposed to serum starvation was abrogated in AKBI MEFs. Inhibition of apoptosis was observed in WT MEFs overexpressing IκBß with simultaneous IκBα knockdown, whereas IκBß overexpression alone did not produce this effect. These findings represent a necessary but not sufficient role of IκBß in preventing oxidant stress-induced cell death.


Assuntos
Apoptose/fisiologia , Fibroblastos/citologia , Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/fisiologia , Animais , Linhagem Celular Transformada , Meios de Cultura Livres de Soro/farmacologia , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Proteínas I-kappa B/genética , Masculino , Camundongos , Camundongos Mutantes , Gravidez , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...