Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 42(3): 326-34, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17210445

RESUMO

Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. Likely to be critical for both functions is a rapid reaction with hydrogen peroxide, typically with second-order rate constants higher than 10(5) M(-1) s(-1). Until recently, however, the values reported for these rate constants have been in the range of 10(4)-10(5) M(-1) s(-1), including those for cytosolic thioredoxin peroxidases I (Tsa1) and II (Tsa2) from Saccharomyces cerevisiae. To resolve this apparent paradox, we developed a competitive kinetic approach with horseradish peroxidase to determine the second-order rate constant of the reaction of peroxiredoxins with peroxynitrite and hydrogen peroxide. This method was validated and allowed for the determination of the second-order rate constant of the reaction of Tsa1 and Tsa2 with peroxynitrite (k approximately 10(5) M(-1) s(-1)) and hydrogen peroxide (k approximately 10(7) M(-1) s(-1)) at pH 7.4, 25 degrees C. It also permitted the determination of the pKa of the peroxidatic cysteine of Tsa1 and Tsa2 (Cys47) as 5.4 and 6.3, respectively. In addition to providing a useful method for studying thiol protein kinetics, our studies add to recent reports challenging the popular belief that peroxiredoxins are poor enzymes toward hydrogen peroxide, as compared with heme and selenium proteins.


Assuntos
Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Peroxidases/química , Ácido Peroxinitroso/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Cisteína/química , Cinética , Dados de Sequência Molecular , Peroxirredoxinas , Homologia de Sequência de Aminoácidos
2.
J Biol Chem ; 279(34): 35219-27, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15210711

RESUMO

The cytosolic thioredoxin peroxidase II (cTPxII/Tsa2p) from Saccharomyces cerevisiae shares 86% identity with the relatively well characterized cytosolic thioredoxin peroxidase I (cTPxI/Tsa1p). In contrast to cTPxI protein, cTPxII is not abundant and is highly inducible by peroxides. Here, we describe a unique phenotype for DeltacTPxII strain; these cells were highly sensitive to tert-butylhydroperoxide (TBHP) but presented resistance to H(2)O(2) in fermentative and respiratory conditions. In contrast, DeltacTPxI strain was very sensitive to both TBHP and H(2)O(2), whatever the carbon source present in the media. These differences in the response of mutant cells to the different kinds of peroxide insult could not be attributed to enzymatic properties of cTPxI and cTPxII since the recombinant proteins showed similar in vitro efficiencies (K(cat) /K(m)) in the removals of both kinds of peroxide. This specific sensitivity of DeltacTPxII cells to TBHP could not be related to the expression pattern of TSA2 (cytosolic thioredoxin peroxidase II gene) either, since this gene is highly inducible by both H(2)O(2) and TBHP when cells were grown in different conditions. Finally, peroxide-removing assays were performed and showed that catalase activity increased significantly only in DeltacTPxII cells, which appear to be related with the resistance of this strain to H(2)O(2). Taken together, present data indicate that cTPxII and cTPxI are key components of the yeast defense system against organic peroxide insult. In regard to the stress induced by H(2)O(2), catalases (peroxisomal and/or cytosolic) and cTPxII seemed to cooperate with cTPxI in the defense of yeast against this oxidant.


Assuntos
Peróxido de Hidrogênio/metabolismo , Oxidantes/metabolismo , Peroxidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adaptação Fisiológica , Linhagem Celular , Citosol/metabolismo , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Estresse Oxidativo , Peroxirredoxinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA