Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 17(48): e2006875, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34048633

RESUMO

Technological breakthroughs in energy storage are being driven by the development of next-generation supercapacitors with favorable features besides high-power density and cycling stability. In this innovation, graphene and its derived materials play an active role. Here, the research status of graphene supercapacitors is analyzed. Recent progress is outlined in graphene assembly, exfoliation, and processing techniques. In addition, electrochemical and electrical attributes that are increasingly valued in next-generation supercapacitors are highlighted along with a summary of the latest research addressing chemical modification of graphene and its derivatives for future supercapacitors. The challenges and solutions discussed in the review hopefully will shed light on the commercialization of graphene and a broader genre of 2D materials in energy storage applications.


Assuntos
Grafite , Eletricidade
2.
J Am Chem Soc ; 142(42): 18093-18102, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32894950

RESUMO

The synthesis of graphene nanoribbons (GNRs) that contain site-specifically substituted backbone heteroatoms is one of the essential goals that must be achieved in order to control the electronic properties of these next generation organic materials. We have exploited our recently reported solid-state topochemical polymerization/cyclization-aromatization strategy to convert the simple 1,4-bis(3-pyridyl)butadiynes 3a,b into the fjord-edge nitrogen-doped graphene nanoribbon structures 1a,b (fjord-edge N2[8]GNRs). Structural assignments are confirmed by CP/MAS 13C NMR, Raman, and XPS spectroscopy. The fjord-edge N2[8]GNRs 1a,b are promising precursors for the novel backbone nitrogen-substituted N2[8]AGNRs 2a,b. Geometry and band calculations on N2[8]AGNR 2c indicate that this class of nanoribbons should have unusual bonding topology and metallicity.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Nitrogênio/química , Modelos Moleculares , Estrutura Molecular
3.
Nano Lett ; 20(4): 2209-2218, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32058724

RESUMO

Graphene oxide (GO) membranes have great potential for separation applications due to their low-friction water permeation combined with unique molecular sieving ability. However, the practical use of deposited GO membranes is limited by the inferior mechanical robustness of the membrane composite structure derived from conventional deposition methods. Here, we report a nanostructured GO membrane that possesses great permeability and mechanical robustness. This composite membrane consists of an ultrathin selective GO nanofilm (as low as 32 nm thick) and a postsynthesized macroporous support layer that exhibits excellent stability in water and under practical permeability testing. By utilizing thin-film lift off (T-FLO) to fabricate membranes with precise optimizations in both selective and support layers, unprecedented water permeability (47 L·m-2·hr-1·bar-1) and high retention (>98% of solutes with hydrated radii larger than 4.9 Å) were obtained.

4.
Nanoscale ; 11(26): 12712-12719, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31241092

RESUMO

Three-dimensional graphenes are versatile materials for a range of electronic applications and considered among the most promising candidates for electrodes in future electric double layer capacitors (EDLCs) as they are expected to outperform commercially used activated carbon. Parameters such as electrical conductivity and active surface area are critical to the final device performance. By adding carbon nanodots to graphene oxide in the starting material for our standard laser-assisted reduction process, the structural integrity (i.e. lower defect density) of the final 3D-graphene is improved. As a result, the active surface area in the hybrid starting materials was increased by 130% and the electrical conductivity enhanced by nearly an order of magnitude compared to pure laser-reduced graphene oxide. These improved material parameters lead to enhanced device performance of the EDLC electrodes. The frequency response, i.e. the minimum phase angle and the relaxation time, were significantly improved from -82.2° and 128 ms to -84.3° and 7.6 ms, respectively. For the same devices the specific gravimetric device capacitance was increased from 110 to a maximum value of 214 F g-1 at a scan rate of 10 mV s-1.

5.
J Am Chem Soc ; 141(22): 9047-9062, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31063359

RESUMO

Single-phase metal dodecaboride solid solutions, Zr0.5Y0.5B12 and Zr0.5U0.5B12, were prepared by arc melting from pure elements. The phase purity and composition were established by powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and 10B and 11B solid-state nuclear magnetic resonance (NMR) spectroscopy. The effects of carbon addition to Zr1- xY xB12 were studied and it was found that carbon causes fast cooling and as a result rapid nucleation of grains, as well as "templating" and patterning effects of the surface morphology. The hardness of the Zr0.5Y0.5B12 phase is 47.6 ± 1.7 GPa at 0.49 N load, which is ∼17% higher than that of its parent compounds, ZrB12 and YB12, with hardness values of 41.6 ± 2.6 and 37.5 ± 4.3 GPa, respectively. The hardness of Zr0.5U0.5B12 is ∼54% higher than that of its UB12 parent. The dodecaborides were confirmed to be metallic by band structure calculations, diffuse reflectance UV-vis, and solid-state NMR spectroscopies. The nature of the dodecaboride colors-violet for ZrB12 and blue for YB12-can be attributed to charge-transfer. XPS indicates that the metals are in the following oxidation states: Y3+, Zr4+, and U5+/6+. The superconducting transition temperatures ( Tc) of the dodecaborides were determined to be 4.5 and 6.0 K for YB12 and ZrB12, respectively, as shown by resistivity and superconducting quantum interference device (SQUID) measurements. The Tc of the Zr0.5Y0.5B12 solid solution was suppressed to 2.5 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...