Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38692743

RESUMO

The lymphatic system plays a crucial role in maintaining tissue fluid balance, immune surveillance, and the transport of lipids and macromolecules. Lymph is absorbed by initial lymphatics and then driven through lymph nodes and to the blood circulation by the contraction of collecting lymphatic vessels. Intraluminal valves in collecting lymphatic vessels ensure the unidirectional flow of lymph centrally. The lymphatic muscle cells that invest in collecting lymphatic vessels impart energy to propel lymph against hydrostatic pressure gradients and gravity. A variety of mechanical and biochemical stimuli modulate the contractile activity of lymphatic vessels. This review focuses on the recent advances in our understanding of the mechanisms involved in regulating and collecting lymphatic vessel pumping in normal tissues and the association between lymphatic pumping, infection, inflammatory disease states, and lymphedema.

2.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712181

RESUMO

Despite significant strides in lymphatic system imaging, the timely diagnosis of lymphatic disorders remains elusive. One main cause for this is the absence of standardized, quantitative methods for real-time analysis of lymphatic contractility. Here, we address this unmet need by combining near-infrared lymphangiography imaging with an innovative analytical workflow. We combined data acquisition, signal processing, and statistical analysis to integrate traditional peak and-valley with advanced wavelet time-frequency analyses. Decision theory was used to evaluate the primary drivers of attributable variance in lymphangiography measurements to generate a strategy for optimizing the number of repeat measurements needed per subject to increase measurement reliability. This approach not only offers detailed insights into lymphatic pumping behaviors across species, sex and age, but also significantly boosts the reliability of these measurements by incorporating multiple regions of interest and evaluating the lymphatic system under various gravitational loads. By addressing the critical need for improved imaging and quantification methods, our study offers a new standard approach for the imaging and analysis of lymphatic function that can improve our understanding, diagnosis, and treatment of lymphatic diseases. The results highlight the importance of comprehensive data acquisition strategies to fully capture the dynamic behavior of the lymphatic system.

3.
Sci Rep ; 14(1): 8767, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627467

RESUMO

Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and optical coherence tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5× and 3.3×, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results correlate with the post-ablation microvascular remodeling patterns.


Assuntos
Hemodinâmica , Terapia a Laser , Camundongos , Animais , Microvasos , Artérias , Modelos Teóricos
4.
Cell Rep Med ; 5(3): 101436, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508146

RESUMO

This study introduces a tailored COVID-19 model for patients with cancer, incorporating viral variants and immune-response dynamics. The model aims to optimize vaccination strategies, contributing to personalized healthcare for vulnerable groups.


Assuntos
COVID-19 , Neoplasias , Humanos , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Vacinação
5.
Cancer Immunol Res ; 12(4): 400-412, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260999

RESUMO

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Adding blockade of the anti-programmed cell death protein (PD)-1 pathway to gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers but with low response rates. Here, we studied the effects of anti-cytotoxic T lymphocyte antigen (CTLA)-4 when combined with anti-PD-1 and gemcitabine/cisplatin in orthotopic murine models of ICC. This combination therapy led to substantial survival benefits and reduction of morbidity in two aggressive ICC models that were resistant to immunotherapy alone. Gemcitabine/cisplatin treatment increased tumor-infiltrating lymphocytes and normalized the ICC vessels and, when combined with dual CTLA-4/PD-1 blockade, increased the number of activated CD8+Cxcr3+IFNγ+ T cells. CD8+ T cells were necessary for the therapeutic benefit because the efficacy was compromised when CD8+ T cells were depleted. Expression of Cxcr3 on CD8+ T cells is necessary and sufficient because CD8+ T cells from Cxcr3+/+ but not Cxcr3-/- mice rescued efficacy in T cell‒deficient mice. Finally, rational scheduling of anti-CTLA-4 "priming" with chemotherapy followed by anti-PD-1 therapy achieved equivalent efficacy with reduced overall drug exposure. These data suggest that this combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.


Assuntos
Colangiocarcinoma , Cisplatino , Gencitabina , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Cisplatino/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Gencitabina/uso terapêutico , Microambiente Tumoral
6.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37781599

RESUMO

Surgical removal of lymph nodes (LNs) to prevent metastatic recurrence, including sentinel lymph node biopsy (SLNB) and completion lymph node dissection (CLND), are performed in routine practice. However, it remains controversial whether removing LNs which are critical for adaptive immune responses impairs immune checkpoint blockade (ICB) efficacy. Here, our retrospective analysis demonstrated that stage III melanoma patients retain robust response to anti-PD1 inhibition after CLND. Using orthotopic murine mammary carcinoma and melanoma models, we show that responses to ICB persist in mice after TDLN resection. Mechanistically, after TDLN resection, antigen can be re-directed to distant LNs, which extends the responsiveness to ICB. Strikingly, by evaluating head and neck cancer patients treated by neoadjuvant durvalumab and irradiation, we show that distant LNs (metastases-free) remain reactive in ICB responders after tumor and disease-related LN resection, hence, persistent anti-cancer immune reactions in distant LNs. Additionally, after TDLN dissection in murine models, ICB delivered to distant LNs generated greater survival benefit, compared to systemic administration. In complete responders, anti-tumor immune memory induced by ICB was systemic rather than confined within lymphoid organs. Based on these findings, we constructed a computational model to predict free antigen trafficking in patients that will undergo LN dissection.

7.
Adv Sci (Weinh) ; 10(36): e2304076, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949675

RESUMO

Effective anti-cancer immune responses require activation of one or more naïve T cells. If the correct naïve T cell encounters its cognate antigen presented by an antigen presenting cell, then the T cell can activate and proliferate. Here, mathematical modeling is used to explore the possibility that immune activation in lymph nodes is a rate-limiting step in anti-cancer immunity and can affect response rates to immune checkpoint therapy. The model provides a mechanistic framework for optimizing cancer immunotherapy and developing testable solutions to unleash anti-tumor immune responses for more patients with cancer. The results show that antigen production rate and trafficking of naïve T cells into the lymph nodes are key parameters and that treatments designed to enhance tumor antigen production can improve immune checkpoint therapies. The model underscores the potential of radiation therapy in augmenting tumor immunogenicity and neoantigen production for improved ICB therapy, while emphasizing the need for careful consideration in cases where antigen levels are already sufficient to avoid compromising the immune response.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Linfócitos T , Antígenos de Neoplasias , Imunoterapia/métodos
8.
bioRxiv ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38014141

RESUMO

Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of collecting lymphatic vessels in mouse dermis at various ages. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and uncovered a pro-inflammatory microenvironment that suppresses the contractile apparatus in advanced-aged LMCs. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to preserve lymphatic vessel function as well as supporting studies to identify genetic causes of primary lymphedema currently with unknown molecular explanation.

9.
Res Sq ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461473

RESUMO

Secondary lymphedema is a debilitating condition driven by impaired regeneration of lymphatic vasculature following lymphatic injury, surgical removal of lymph nodes in cancer patients or infection. However, the extent to which collecting lymphatic vessels regenerate following injury remains unclear. Here, we employed a novel mouse model of lymphatic injury in combination with state-of-the-art lymphatic imaging to demonstrate that the implantation of an optimized fibrin gel following lymphatic vessel injury leads to the growth and reconnection of the injured lymphatic vessel network, resulting in the restoration of lymph flow to the draining node. Intriguingly, we found that fibrin implantation elevates the tissue levels of CCL5, a potent macrophage-recruiting chemokine. Notably, CCL5-KO mice displayed a reduced ability to reconnect injured vessels following fibrin gel implantation. These novel findings shed light on the mechanisms underlying lymphatic regeneration and suggest that enhancing CCL5 signaling may be a promising therapeutic strategy for enhancing lymphatic regeneration.

10.
PLoS Comput Biol ; 19(6): e1011131, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289729

RESUMO

Implementation of effective cancer treatment strategies requires consideration of how the spatiotemporal heterogeneities within the tumor microenvironment (TME) influence tumor progression and treatment response. Here, we developed a multi-scale three-dimensional mathematical model of the TME to simulate tumor growth and angiogenesis and then employed the model to evaluate an array of single and combination therapy approaches. Treatments included maximum tolerated dose or metronomic (i.e., frequent low doses) scheduling of anti-cancer drugs combined with anti-angiogenic therapy. The results show that metronomic therapy normalizes the tumor vasculature to improve drug delivery, modulates cancer metabolism, decreases interstitial fluid pressure and decreases cancer cell invasion. Further, we find that combining an anti-cancer drug with anti-angiogenic treatment enhances tumor killing and reduces drug accumulation in normal tissues. We also show that combined anti-angiogenic and anti-cancer drugs can decrease cancer invasiveness and normalize the cancer metabolic microenvironment leading to reduced hypoxia and hypoglycemia. Our model simulations suggest that vessel normalization combined with metronomic cytotoxic therapy has beneficial effects by enhancing tumor killing and limiting normal tissue toxicity.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Preparações Farmacêuticas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neoplasias/patologia , Antineoplásicos/farmacologia , Imunoterapia , Neovascularização Patológica/metabolismo , Microambiente Tumoral
11.
Cardiovasc Res ; 119(8): 1656-1675, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37163659

RESUMO

Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological high shear stress, flow near branch points or in curved vessels can exhibit 'disturbed' flow. Clinical studies as well as carefully controlled in vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endothelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial mechanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Células Endoteliais/patologia , Aterosclerose/patologia , Endotélio Vascular , Hemodinâmica , Estresse Mecânico , Mecanotransdução Celular
12.
Methods Mol Biol ; 2645: 211-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37202621

RESUMO

Validation of potential therapeutic targets in cancer requires functional live assays that recapitulate the biology, anatomy, and physiology of human tumors. We present a methodology for maintaining mouse and patient tumor samples ex vivo for in vitro drug-screening as well as for the guidance of patient-specific chemotherapies. The harvested tumor biopsy, excised from mice or patients, is integrated into a support tissue that includes extended stroma and vasculature. The methodology is more representative than tissue culture assays, faster than patient-derived xenograft models, easy to implement, amenable to high-throughput assays and does not carry the ethical issues or expense associated with animal studies. Our physiologically relevant model can be successfully used for high-throughput drug screening.


Assuntos
Materiais Biocompatíveis , Neoplasias , Humanos , Camundongos , Animais , Avaliação Pré-Clínica de Medicamentos , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala
13.
Cancers (Basel) ; 15(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831366

RESUMO

Radiotherapy (RT) is a standard treatment for patients with advanced prostate cancer (PCa). Previous preclinical studies showed that SDF1α/CXCR4 axis could mediate PCa metastasis (most often to the bones) and cancer resistance to RT. We found high levels of expression for both SDF1α and its receptor CXCR4 in primary and metastatic PCa tissue samples. In vitro analyses using PCa cells revealed an important role of CXCR4 in cell invasion but not radiotolerance. Pharmacologic inhibition of CXCR4 using AMD3100 showed no efficacy in orthotopic primary and bone metastatic PCa models. However, when combined with RT, AMD3100 potentiated the effect of local single-dose RT (12 Gy) in both models. Moreover, CXCR4 inhibition also reduced lymph node metastasis from primary PCa. Notably, CXCR4 inhibition promoted the normalization of bone metastatic PCa vasculature and reduced tissue hypoxia. In conclusion, the SDF1α/CXCR4 axis is a potential therapeutic target in metastatic PCa patients treated with RT.

14.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747853

RESUMO

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Anti-PD-L1 immunotherapy combined with gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers, but responses are seen only in a minority of patients. Here, we studied the roles of anti-PD1 and anti-CTLA-4 immune checkpoint blockade (ICB) therapies when combined with gemcitabine/cisplatin and the mechanisms of treatment benefit in orthotopic murine ICC models. We evaluated the effects of the combined treatments on ICC vasculature and immune microenvironment using flow cytometry analysis, immunofluorescence, imaging mass cytometry, RNA-sequencing, qPCR, and in vivo T-cell depletion and CD8+ T-cell transfer using orthotopic ICC models and transgenic mice. Combining gemcitabine/cisplatin with anti-PD1 and anti-CTLA-4 antibodies led to substantial survival benefits and reduction of morbidity in two aggressive ICC models, which were ICB-resistant. Gemcitabine/cisplatin treatment increased the frequency of tumor-infiltrating lymphocytes and normalized the ICC vessels, and when combined with dual CTLA-4/PD1 blockade, increased the number of activated CD8+Cxcr3+IFN-γ+ T-cells. Depletion of CD8+ but not CD4+ T-cells compromised efficacy. Conversely, CD8+ T-cell transfer from Cxcr3-/- versus Cxcr3+/+ mice into Rag1-/- immunodeficient mice restored the anti-tumor effect of gemcitabine/cisplatin/ICB combination therapy. Finally, rational scheduling of the ICBs (anti-CTLA-4 "priming") with chemotherapy and anti-PD1 therapy achieved equivalent efficacy with continuous dosing while reducing overall drug exposure. In summary, gemcitabine/cisplatin chemotherapy normalizes vessel structure, increases activated T-cell infiltration, and enhances anti-PD1/CTLA-4 immunotherapy efficacy in aggressive murine ICC. This combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.

15.
Proc Natl Acad Sci U S A ; 120(3): e2211132120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623200

RESUMO

SARS-CoV-2 vaccines are effective at limiting disease severity, but effectiveness is lower among patients with cancer or immunosuppression. Effectiveness wanes with time and varies by vaccine type. Moreover, previously prescribed vaccines were based on the ancestral SARS-CoV-2 spike-protein that emerging variants may evade. Here, we describe a mechanistic mathematical model for vaccination-induced immunity. We validate it with available clinical data and use it to simulate the effectiveness of vaccines against viral variants with lower antigenicity, increased virulence, or enhanced cell binding for various vaccine platforms. The analysis includes the omicron variant as well as hypothetical future variants with even greater immune evasion of vaccine-induced antibodies and addresses the potential benefits of the new bivalent vaccines. We further account for concurrent cancer or underlying immunosuppression. The model confirms enhanced immunogenicity following booster vaccination in immunosuppressed patients but predicts ongoing booster requirements for these individuals to maintain protection. We further studied the impact of variants on immunosuppressed individuals as a function of the interval between multiple booster doses. Our model suggests possible strategies for future vaccinations and suggests tailored strategies for high-risk groups.


Assuntos
COVID-19 , Neoplasias , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Anticorpos Antivirais , Anticorpos Neutralizantes
16.
Res Sq ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38196660

RESUMO

Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and Optical Coherence Tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5x and 3.3x, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results match the post-ablation microvascular remodeling patterns.

17.
Sci Rep ; 12(1): 4890, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318426

RESUMO

Edema in the limbs can arise from pathologies such as elevated capillary pressures due to failure of venous valves, elevated capillary permeability from local inflammation, and insufficient fluid clearance by the lymphatic system. The most common treatments include elevation of the limb, compression wraps and manual lymphatic drainage therapy. To better understand these clinical situations, we have developed a comprehensive model of the solid and fluid mechanics of a lower limb that includes the effects of gravity. The local fluid balance in the interstitial space includes a source from the capillaries, a sink due to lymphatic clearance, and movement through the interstitial space due to both gravity and gradients in interstitial fluid pressure (IFP). From dimensional analysis and numerical solutions of the governing equations we have identified several parameter groups that determine the essential length and time scales involved. We find that gravity can have dramatic effects on the fluid balance in the limb with the possibility that a positive feedback loop can develop that facilitates chronic edema. This process involves localized tissue swelling which increases the hydraulic conductivity, thus allowing the movement of interstitial fluid vertically throughout the limb due to gravity and causing further swelling. The presence of a compression wrap can interrupt this feedback loop. We find that only by modeling the complex interplay between the solid and fluid mechanics can we adequately investigate edema development and treatment in a gravity dependent limb.


Assuntos
Líquido Extracelular , Modelos Biológicos , Edema , Humanos , Extremidade Inferior , Pressão
18.
Mater Today Bio ; 13: 100208, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35198957

RESUMO

Nanotechnology in medical applications, especially in oncology as drug delivery systems, has recently shown promising results. However, although these advances have been promising in the pre-clinical stages, the clinical translation of this technology is challenging. To create drug delivery systems with increased treatment efficacy for clinical translation, the physicochemical characteristics of nanoparticles such as size, shape, elasticity (flexibility/rigidity), surface chemistry, and surface charge can be specified to optimize efficiency for a given application. Consequently, interdisciplinary researchers have focused on producing biocompatible materials, production technologies, or new formulations for efficient loading, and high stability. The effects of design parameters can be studied in vitro, in vivo, or using computational models, with the goal of understanding how they affect nanoparticle biophysics and their interactions with cells. The present review summarizes the advances and technologies in the production and design of cancer nanomedicines to achieve clinical translation and commercialization. We also highlight existing challenges and opportunities in the field.

19.
Matrix Biol Plus ; 13: 100100, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35106474

RESUMO

Mammalian cells, including cancer cells, are covered by a surface layer containing cell bound proteoglycans, glycoproteins, associated glycosaminoglycans and bound proteins that is commonly referred to as the glycocalyx. Solid tumors also have a dynamic fluid microenvironment with elevated interstitial flow. In the present work we further investigate the hypothesis that interstitial flow is sensed by the tumor glycocalyx leading to activation of cell motility and metastasis. Using a highly metastatic renal carcinoma cell line (SN12L1) and its low metastatic counterpart (SN12C) we demonstrate in vitro that the small molecule Suberoylanilide Hydroxamic Acid (SAHA) inhibits the heparan sulfate synthesis enzyme N-deacetylase-N-sulfotransferase-1, reduces heparan sulfate in the glycocalyx and suppresses SN12L1 motility in response to interstitial flow. SN12L1 cells implanted in the kidney capsule of SCID mice formed large primary tumors and metastasized to distant organs, but when treated with SAHA metastases were not detected. In another set of experiments, the role of hyaluronic acid was investigated. Hyaluronan synthase 1, a critical enzyme in the synthetic pathway for hyaluronic acid, was knocked down in SN12L1 cells and in vitro experiments revealed inhibition of interstitial flow induced migration. Subsequently these cells were implanted in mouse kidneys and no distant metastases were detected. These findings suggest new therapeutic approaches to the treatment of kidney carcinoma metastasis.

20.
EBioMedicine ; 75: 103809, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35033853

RESUMO

BACKGROUND: Mathematical modelling may aid in understanding the complex interactions between injury and immune response in critical illness. METHODS: We utilize a system biology model of COVID-19 to analyze the effect of altering baseline patient characteristics on the outcome of immunomodulatory therapies. We create example parameter sets meant to mimic diverse patient types. For each patient type, we define the optimal treatment, identify biologic programs responsible for clinical responses, and predict biomarkers of those programs. FINDINGS: Model states representing older and hyperinflamed patients respond better to immunomodulation than those representing obese and diabetic patients. The disparate clinical responses are driven by distinct biologic programs. Optimal treatment initiation time is determined by neutrophil recruitment, systemic cytokine expression, systemic microthrombosis and the renin-angiotensin system (RAS) in older patients, and by RAS, systemic microthrombosis and trans IL6 signalling for hyperinflamed patients. For older and hyperinflamed patients, IL6 modulating therapy is predicted to be optimal when initiated very early (<4th day of infection) and broad immunosuppression therapy (corticosteroids) is predicted to be optimally initiated later in the disease (7th - 9th day of infection). We show that markers of biologic programs identified by the model correspond to clinically identified markers of disease severity. INTERPRETATION: We demonstrate that modelling of COVID-19 pathobiology can suggest biomarkers that predict optimal response to a given immunomodulatory treatment. Mathematical modelling thus constitutes a novel adjunct to predictive enrichment and may aid in the reduction of heterogeneity in critical care trials. FUNDING: C.V. received a Marie Sklodowska Curie Actions Individual Fellowship (MSCA-IF-GF-2020-101028945). R.K.J.'s research is supported by R01-CA208205, and U01-CA 224348, R35-CA197743 and grants from the National Foundation for Cancer Research, Jane's Trust Foundation, Advanced Medical Research Foundation and Harvard Ludwig Cancer Center. No funder had a role in production or approval of this manuscript.


Assuntos
COVID-19/imunologia , Modelos Imunológicos , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2/imunologia , Idoso , COVID-19/prevenção & controle , Ensaios Clínicos como Assunto , Feminino , Humanos , Masculino , Síndrome do Desconforto Respiratório/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...