Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Elife ; 62017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145866

RESUMO

Inhibitors that target the receptor tyrosine kinase (RTK)/Ras/mitogen-activated protein kinase (MAPK) pathway have led to clinical responses in lung and other cancers, but some patients fail to respond and in those that do resistance inevitably occurs (Balak et al., 2006; Kosaka et al., 2006; Rudin et al., 2013; Wagle et al., 2011). To understand intrinsic and acquired resistance to inhibition of MAPK signaling, we performed CRISPR-Cas9 gene deletion screens in the setting of BRAF, MEK, EGFR, and ALK inhibition. Loss of KEAP1, a negative regulator of NFE2L2/NRF2, modulated the response to BRAF, MEK, EGFR, and ALK inhibition in BRAF-, NRAS-, KRAS-, EGFR-, and ALK-mutant lung cancer cells. Treatment with inhibitors targeting the RTK/MAPK pathway increased reactive oxygen species (ROS) in cells with intact KEAP1, and loss of KEAP1 abrogated this increase. In addition, loss of KEAP1 altered cell metabolism to allow cells to proliferate in the absence of MAPK signaling. These observations suggest that alterations in the KEAP1/NRF2 pathway may promote survival in the presence of multiple inhibitors targeting the RTK/Ras/MAPK pathway.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico
3.
Cancer Discov ; 6(8): 900-13, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27260157

RESUMO

UNLABELLED: CRISPR/Cas9 has emerged as a powerful new tool to systematically probe gene function. We compared the performance of CRISPR to RNAi-based loss-of-function screens for the identification of cancer dependencies across multiple cancer cell lines. CRISPR dropout screens consistently identified more lethal genes than RNAi, implying that the identification of many cellular dependencies may require full gene inactivation. However, in two aneuploid cancer models, we found that all genes within highly amplified regions, including nonexpressed genes, scored as lethal by CRISPR, revealing an unanticipated class of false-positive hits. In addition, using a CRISPR tiling screen, we found that sgRNAs targeting essential domains generate the strongest lethality phenotypes and thus provide a strategy to rapidly define the protein domains required for cancer dependence. Collectively, these findings not only demonstrate the utility of CRISPR screens in the identification of cancer-essential genes, but also reveal the need to carefully control for false-positive results in chromosomally unstable cancer lines. SIGNIFICANCE: We show in this study that CRISPR-based screens have a significantly lower false-negative rate compared with RNAi-based screens, but have specific liabilities particularly in the interrogation of regions of genome amplification. Therefore, this study provides critical insights for applying CRISPR-based screens toward the systematic identification of new cancer targets. Cancer Discov; 6(8); 900-13. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Aguirre et al., p. 914This article is highlighted in the In This Issue feature, p. 803.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Amplificação de Genes , Genoma Humano , Genômica , Neoplasias/genética , Linhagem Celular Tumoral , Estudos de Associação Genética , Genômica/métodos , Genômica/normas , Ensaios de Triagem em Larga Escala , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/genética , Reprodutibilidade dos Testes
4.
J Exp Med ; 208(4): 689-702, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21464220

RESUMO

Glioblastoma Multiforme (GBM), the most common and lethal primary human brain tumor, exhibits multiple molecular aberrations. We report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumor suppressor gene (TSG). Although GATA4 was expressed in normal brain, loss of GATA4 was observed in 94/163 GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethylation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor-like phenotype, formation of neurospheres, and the ability to differentiate into astrocytes, neurons, and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures, and brain tumor-initiating cells suppressed tumor growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21(CIP1), independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT (O-6-methylguanine-DNA-methyltransferase), the DNA repair enzyme which is often implicated in temozolomide resistance. Instead, GATA4 reduced expression of APNG (alkylpurine-DNA-N-glycosylase), a DNA repair enzyme which is poorly characterized in GBM-mediated temozolomide resistance. Identification and validation of GATA4 as a TSG and its downstream targets in GBM may yield promising novel therapeutic strategies.


Assuntos
Neoplasias Encefálicas/prevenção & controle , Fator de Transcrição GATA4/fisiologia , Glioblastoma/prevenção & controle , Proteínas Supressoras de Tumor/fisiologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Metilação de DNA , Metilases de Modificação do DNA/fisiologia , Enzimas Reparadoras do DNA/fisiologia , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Fator de Transcrição GATA4/genética , Glioblastoma/patologia , Humanos , Camundongos , Regiões Promotoras Genéticas , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...