Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 873: 162266, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822431

RESUMO

Mixed forest stands tend to be more resistant to drought than species-specific stands partially due to complementarity in root ecology and physiology. We asked whether complementary differences in the drought resistance of soil microbiomes might contribute to this phenomenon. We experimented on the effects of reduced soil moisture on bacterial and fungal community composition in species-specific (single species) and mixed-species root zones of Norway spruce and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal (spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root zones, corresponding with the proportions of drought-favored (more in spruce) and drought-sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal and latitudinal precipitation gradients and were more predictive of soil water content than other environmental variables. We conclude that complementary differences in the drought resistance of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones coincides with the enrichment of drought-tolerant bacteria associated with spruce and the sustenance of EMF by beech.


Assuntos
Fagus , Micorrizas , Picea , Solo , Florestas , Estações do Ano , Fagus/fisiologia , Bactérias , Árvores/fisiologia , Picea/fisiologia
2.
Agron Sustain Dev ; 41(5): 62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484434

RESUMO

In Latin America, the cultivation of Arabica coffee (Coffea arabica) plays a critical role in rural livelihoods, biodiversity conservation, and sustainable development. Over the last 20 years, coffee farms and landscapes across the region have undergone rapid and profound biophysical changes in response to low coffee prices, changing climatic conditions, severe plant pathogen outbreaks, and other drivers. Although these biophysical transformations are pervasive and affect millions of rural livelihoods, there is limited information on the types, location, and extent of landscape changes and their socioeconomic and ecological consequences. Here we review the state of knowledge on the ongoing biophysical changes in coffee-growing regions, explore the potential socioeconomic and ecological impacts of these changes, and highlight key research gaps. We identify seven major land-use trends which are affecting the sustainability of coffee-growing regions across Latin America in different ways. These trends include (1) the widespread shift to disease-resistant cultivars, (2) the conventional intensification of coffee management with greater planting densities, greater use of agrochemicals and less shade, (3) the conversion of coffee to other agricultural land uses, (4) the introduction of Robusta coffee (Coffea canephora) into areas not previously cultivated with coffee, (5) the expansion of coffee into forested areas, (6) the urbanization of coffee landscapes, and (7) the increase in the area of coffee produced under voluntary sustainability standards. Our review highlights the incomplete and scattered information on the drivers, patterns, and outcomes of biophysical changes in coffee landscapes, and lays out a detailed research agenda to address these research gaps and elucidate the effects of different landscape trajectories on rural livelihoods, biodiversity conservation, and other aspects of sustainable development. A better understanding of the drivers, patterns, and consequences of changes in coffee landscapes is vital for informing the design of policies, programs, and incentives for sustainable coffee production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13593-021-00712-0.

3.
PLoS One ; 15(4): e0230577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32251438

RESUMO

Vermicompost application has been shown to promote plant growth, alter the rhizosphere microbiome, and suppress plant pathogens. These beneficial properties are often attributed to the activity of vermicompost-associated microorganisms. However, little is known about the microbial shifts that occur in the rhizosphere after vermicompost application. To better understand the impact of vermicompost treatments on the assembly of rhizosphere bacterial communities, 16S rDNA communities of vermicompost and rhizospheres of each peat- and soil-grown tomatoes were profiled after conventional fertigation, irrigation without additional nutrients, and addition of three different vermicompost-extracts. The full dataset consisted of 412 identified genera, of which 317 remained following stringent quality filtration. Tomato rhizosphere microbiome responses to treatments were complex and unique between peat and soil growth substrates. Direct colonization of vermicompost-origin taxa into rhizospheres was limited, with genera Photobacterium and Luteimonas colonizing peat rhizospheres, genera Truepera, Phenylobacterium, and Lysinibacillus colonizing soil rhizospheres, and genus Pelagibius appearing in both soil and peat rhizospheres. Further patterns of differential abundance and presence/absence between treatments highlight vermicompost-mediated effects on rhizosphere microbiome assembly as an interplay of rhizosphere medium, direct colonization of vermicompost-origin taxa and vermicompost-induced shifts in the rhizosphere microbial community. This exploratory analysis is intended to provide an initial look at 16S community composition of vermicompost and the effects of vermicompost treatment on the rhizosphere microbiome assembly to highlight interactions of potential merit for subsequent investigations.


Assuntos
Bactérias/isolamento & purificação , Compostagem , Rizosfera , Solanum lycopersicum/microbiologia , Bactérias/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...