Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731848

RESUMO

The pathogenesis of chronic wounds (CW) involves a multifaceted interplay of biochemical, immunological, hematological, and microbiological interactions. Biofilm development is a significant virulence trait which enhances microbial survival and pathogenicity and has various implications on the development and management of CW. Biofilms induce a prolonged suboptimal inflammation in the wound microenvironment, associated with delayed healing. The composition of wound fluid (WF) adds more complexity to the subject, with proven pro-inflammatory properties and an intricate crosstalk among cytokines, chemokines, microRNAs, proteases, growth factors, and ECM components. One approach to achieve information on the mechanisms of disease progression and therapeutic response is the use of multiple high-throughput 'OMIC' modalities (genomic, proteomic, lipidomic, metabolomic assays), facilitating the discovery of potential biomarkers for wound healing, which may represent a breakthrough in this field and a major help in addressing delayed wound healing. In this review article, we aim to summarize the current progress achieved in host-microbiome crosstalk in the spectrum of CW healing and highlight future innovative strategies to boost the host immune response against infections, focusing on the interaction between pathogens and their hosts (for instance, by harnessing microorganisms like probiotics), which may serve as the prospective advancement of vaccines and treatments against infections.


Assuntos
Biofilmes , Microbiota , Cicatrização , Humanos , Biofilmes/crescimento & desenvolvimento , Animais , Doença Crônica , Interações Hospedeiro-Patógeno/imunologia
2.
Pathogens ; 12(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37764896

RESUMO

Buruli ulcer (BU) is a bacterial skin infection that is caused by Mycobacterium ulcerans and mainly affects people who reside in the rural areas of Africa and in suburban and beach resort communities in Australia. The infection typically begins as a painless papule or nodule that gradually develops into a large ulcer that can cause substantial impairment, damaging soft tissues and even bones. Early detection and immediate treatment are crucial to preventing further tissue damage and any potential complications, although it is worth noting that access to proper therapeutic resources can be limited in certain areas. The most commonly used antibiotics for treating BU are rifampicin, streptomycin, and clarithromycin; efforts have recently been made to introduce new treatments that increase the effectiveness and adherence to therapy. This article presents the latest research and management strategies regarding BU, providing an updated and intriguing perspective on this topic.

3.
J Clin Microbiol ; 55(11): 3267-3282, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28904183

RESUMO

The TB Portals program is an international consortium of physicians, radiologists, and microbiologists from countries with a heavy burden of drug-resistant tuberculosis working with data scientists and information technology professionals. Together, we have built the TB Portals, a repository of socioeconomic/geographic, clinical, laboratory, radiological, and genomic data from patient cases of drug-resistant tuberculosis backed by shareable, physical samples. Currently, there are 1,299 total cases from five country sites (Azerbaijan, Belarus, Moldova, Georgia, and Romania), 976 (75.1%) of which are multidrug or extensively drug resistant and 38.2%, 51.9%, and 36.3% of which contain X-ray, computed tomography (CT) scan, and genomic data, respectively. The top Mycobacterium tuberculosis lineages represented among collected samples are Beijing, T1, and H3, and single nucleotide polymorphisms (SNPs) that confer resistance to isoniazid, rifampin, ofloxacin, and moxifloxacin occur the most frequently. These data and samples have promoted drug discovery efforts and research into genomics and quantitative image analysis to improve diagnostics while also serving as a valuable resource for researchers and clinical providers. The TB Portals database and associated projects are continually growing, and we invite new partners and collaborations to our initiative. The TB Portals data and their associated analytical and statistical tools are freely available at https://tbportals.niaid.nih.gov/.


Assuntos
Bases de Dados Factuais , Disseminação de Informação , Internet , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Europa Oriental/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Transcaucásia/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Adulto Jovem
4.
BMC Microbiol ; 13: 171, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23879872

RESUMO

BACKGROUND: Microcalorimetric bacterial growth studies have illustrated that thermograms differ significantly with both culture media and strain. The present contribution examines the possibility of discriminating between certain bacterial strains by microcalorimetry and the qualitative and quantitative contribution of the sample volume to the observed thermograms. Growth patterns of samples of Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) were analyzed. Certain features of the thermograms that may serve to distinguish between these bacterial strains were identified. RESULTS: The thermograms of the two bacterial strains with sample volumes ranging from 0.3 to 0.7 ml and same initial bacterial concentration were analyzed. Both strains exhibit a roughly 2-peak shape that differs by peak amplitude and position along the time scale. Seven parameters corresponding to the thermogram key points related to time and heat flow values were proposed and statistically analyzed. The most relevant parameters appear to be the time to reach a heat flow of 0.05 mW (1.67 ± 0.46 h in E. coli vs. 2.99 ± 0.53 h in S. aureus, p < 0.0001), the time to reach the first peak (3.84 ± 0.5 h vs. 5.17 ± 0.49 h, p < 0.0001) and the first peak value (0.19 ± 0.02 mW vs. 0.086 ± 0.012 mW, p < 0.0001). The statistical analysis on 4 parameters of volume-normalized heat flow thermograms showed that the time to reach a volume-normalized heat flow of 0.1 mW/ml (1.75 ± 0.37 h in E. coli vs. 2.87 ± 0.65 h in S. aureus, p < 0.005), the time to reach the first volume-normalized peak (3.78 ± 0.47 h vs. 5.12 ± 0.52 h, p < 0.0001) and the first volume-normalized peak value (0.35 ± 0.05 mW/ml vs. 0.181 ± 0.040 mW/ml, p < 0.0001) seem to be the most relevant. Peakfit® decomposition and analysis of the observed thermograms complements the statistical analysis via quantitative arguments, indicating that: (1) the first peak pertains to a faster, "dissolved oxygen" bacterial growth (where the dissolved oxygen in the initial suspension acts as a limiting factor); (2) the second peak indicates a slower "diffused oxygen" growth that involves transport of oxygen contained in the unfilled part of the microcalorimetric cell; (3) a strictly fermentative growth component may slightly contribute to the observed complex thermal signal. CONCLUSION: The investigated strains of Staphylococcus aureus and Escherichia coli display, under similar experimental conditions, distinct thermal growth patterns. The two strains can be easily differentiated using a selection of the proposed parameters. The presented Peakfit analysis of the complex thermal signal provides the necessary means for establishing the optimal growth conditions of various bacterial strains. These conditions are needed for the standardization of the isothermal microcalorimetry method in view of its further use in qualitative and quantitative estimation of bacterial growth.


Assuntos
Calorimetria/métodos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Técnicas Bacteriológicas/métodos , Especificidade da Espécie
5.
Pneumologia ; 62(4): 232-5, 2013.
Artigo em Romano | MEDLINE | ID: mdl-24734357

RESUMO

The microcalorimetry is a method used for recording of the heat produced by a thermodinamic system in a scale of micronanojouls. One of the domains in which this method is used is the one called bacterial microcalorimetry, which studies the heat generated by the bacterial populations. The process of bacterial growth can be monitored in real time by the recording a graph of the generated power over time. The modern isothermal microcalorimeters allow the detection of a signal variation of only one microwatt. The estimated generated power of a bacteria is approximately 1-4pW thus only a small number of bacteria is necessary for the experiments. Recent studies in the field of bacterial microcalorimetry have demonstrated that, in standard conditions, this method can be reproductible and can be used to detect and characterize bacterial growth (through the study of the microcalorimetric growth curve particular to a bacterial species which is called a microcalorimetric fingerprint) and offers the new information in regards to bacterial metabolism. Also, microcalorimetry can offer information about bacterial interaction with different factors in the medium (for example, antibioticsubstances, in which case an antibiogram is obtained in 4-5 hours). In conclusion, we can say that microcalorimetry is a reproducible method, which offers an interesting perspective on bacterial characterization, with great scientific potential, and there are sufficient arguments to continue studies in this field.


Assuntos
Bactérias/metabolismo , Calorimetria/métodos , Temperatura Alta , Fenômenos Fisiológicos Bacterianos , Técnicas Bacteriológicas , Reprodutibilidade dos Testes , Fatores de Tempo
6.
BMC Microbiol ; 10: 322, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21162759

RESUMO

BACKGROUND: A microcalorimetric study was carried out using a Staphylococcus epidermidis population to determine the reproducibility of bacterial growth and the variability of the results within certain experimental parameters (temperature, bacterial concentration, sample thermal history). Reproducibility tests were performed as series of experiments within the same conditions using either freshly prepared populations or samples kept in cold storage. In both cases, the samples were obtained by serial dilution from a concentrated TSB bacterial inoculum incubated overnight. RESULTS: The results show that experiments are fairly reproducible and that specimens can be preserved at low temperatures (1 - 2°C) at least 4 days. The thermal signal variations at different temperatures and initial bacterial concentrations obey a set of rules that we identified. CONCLUSION: Our study adds to the accumulating data and confirms available results of isothermal microcalorimetry applications in microbiology and can be used to standardize this method for either research or clinical setting.


Assuntos
Calorimetria/métodos , Staphylococcus epidermidis/química , Staphylococcus epidermidis/crescimento & desenvolvimento , Viabilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...