Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400372, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630101

RESUMO

Successful implementation of X-ray-activated photodynamic therapy (X-PDT) is challenging because most photosensitizers (PSs) absorb light in the blue region, but few nanoscintillators produce efficient blue scintillation. Here, efficient blue-emitting SrF2:Eu scintillating nanoparticles (ScNPs) are developed. The optimized synthesis conditions result in cubic nanoparticles with ≈32 nm diameter and blue emission at 416 nm. Coating them with the meso-tetra(n-methyl-4-pyridyl) porphyrin (TMPyP) in a core-shell structure (SrF@TMPyP) results in maximum singlet oxygen (1O2) generation upon X-ray irradiation for nanoparticles with 6TMPyP depositions (SrF@6TMPyP). The 1O2 generation is directly proportional to the dose, does not vary in the low-energy X-ray range (48-160 kVp), but is 21% higher when irradiated with low-energy X-rays than irradiations with higher energy gamma rays. In the clonogenic assay, cancer cells treated with SrF@6TMPyP and exposed to X-rays present a significantly reduced survival fraction compared to the controls. The SrF2:Eu ScNPs and their conjugates stand out as tunable nanoplatforms for X-PDT due to the efficient blue emission from the SrF2:Eu cores; the ability to adjust the scintillation emission in terms of color and intensity by controlling the nanoparticle size; the efficient 1O2 production when conjugated to a PS and the efficacy of killing cancer cells.

2.
Nanoscale ; 16(5): 2347-2360, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113032

RESUMO

This article presents bioconjugates combining nanoparticles (AGuIX) with nanobodies (VHH) targeting Programmed Death-Ligand 1 (PD-L1, A12 VHH) and Cluster of Differentiation 47 (CD47, A4 VHH) for active tumor targeting. AGuIX nanoparticles offer theranostic capabilities and an efficient biodistribution/pharmacokinetic profile (BD/PK), while VHH's reduced size (15 kDa) allows efficient tumor penetration. Site-selective sortagging and click chemistry were compared for bioconjugation. While both methods yielded bioconjugates with similar functionality, click chemistry demonstrated higher yield and could be used for the conjugation of various VHH. The specific targeting of AGuIX@VHH has been demonstrated in both in vitro and ex vivo settings, paving the way for combined targeted immunotherapies, radiotherapy, and cancer imaging.


Assuntos
Gadolínio , Nanopartículas , Neoplasias , Humanos , Distribuição Tecidual , Medicina de Precisão , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
3.
Cell Rep ; 28(13): 3381-3394.e7, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553908

RESUMO

Purinergic receptors and nucleotide-binding domain leucine-rich repeat containing (NLR) proteins have been shown to control viral infection. Here, we show that the NLR family member NLRP3 and the purinergic receptor P2Y2 constitutively interact and regulate susceptibility to HIV-1 infection. We found that NLRP3 acts as an inhibitory factor of viral entry that represses F-actin remodeling. The binding of the HIV-1 envelope to its host cell receptors (CD4, CXCR4, and/or CCR5) overcomes this restriction by stimulating P2Y2. Once activated, P2Y2 enhances its interaction with NLRP3 and stimulates the recruitment of the E3 ubiquitin ligase CBL to NLRP3, ultimately leading to NLRP3 degradation. NLRP3 degradation is permissive for PYK2 phosphorylation (PYK2Y402∗) and subsequent F-actin polymerization, which is required for the entry of HIV-1 into host cells. Taken together, our results uncover a mechanism by which HIV-1 overcomes NLRP3 restriction that appears essential for the accomplishment of the early steps of HIV-1 entry.


Assuntos
Actinas/metabolismo , HIV-1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Polimerização , Transdução de Sinais , Internalização do Vírus
4.
Cell Death Differ ; 24(9): 1632-1644, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28574504

RESUMO

Although tumor-associated macrophages have been extensively studied in the control of response to radiotherapy, the molecular mechanisms involved in the ionizing radiation-mediated activation of macrophages remain elusive. Here we show that ionizing radiation induces the expression of interferon regulatory factor 5 (IRF5) promoting thus macrophage activation toward a pro-inflammatory phenotype. We reveal that the activation of the ataxia telangiectasia mutated (ATM) kinase is required for ionizing radiation-elicited macrophage activation, but also for macrophage reprogramming after treatments with γ-interferon, lipopolysaccharide or chemotherapeutic agent (such as cisplatin), underscoring the fact that the kinase ATM plays a central role during macrophage phenotypic switching toward a pro-inflammatory phenotype through the regulation of mRNA level and post-translational modifications of IRF5. We further demonstrate that NADPH oxidase 2 (NOX2)-dependent ROS production is upstream to ATM activation and is essential during this process. We also report that the inhibition of any component of this signaling pathway (NOX2, ROS and ATM) impairs pro-inflammatory activation of macrophages and predicts a poor tumor response to preoperative radiotherapy in locally advanced rectal cancer. Altogether, our results identify a novel signaling pathway involved in macrophage activation that may enhance the effectiveness of radiotherapy through the reprogramming of tumor-infiltrating macrophages.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ativação de Macrófagos/efeitos da radiação , Macrófagos/metabolismo , Animais , Linhagem Celular , Citometria de Fluxo , Humanos , Interferon gama/metabolismo , Camundongos , Microscopia de Fluorescência , Fosforilação/efeitos da radiação , Processamento de Proteína Pós-Traducional , Células RAW 264.7 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...