Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 6: 23114, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975208

RESUMO

Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as "ferrite plating". The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.

2.
Anal Sci ; 22(4): 521-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16760591

RESUMO

The molecular interaction force of the intermonolayer hydrogen bonding between phenylurea groups on a probe tip and carboxyl groups in self-assembled monolayers was measured directly by means of atomic force microscopy in ethanol. Gold-coated AFM probe tips were modified chemically with 2-(N'-phenylureido)ethanethiol possessing a terminal urea moiety, which is a well-known powerful functionality for forming stable hydrogen bondings with neutral and anionic species. Adhesion force measurements were carried out on gold substrates coated with a COOH-terminated SAM composed of 6-mercaptohexanoic acid in ethanol using the phenylurea-functionalized probe tip. The adhesion force observed was decreased in the presence of H2PO4(-) in the measurement bath, indicating that the intermonolayer hydrogen bonding between the phenylurea moieties and carboxyl groups attached covalently to the probe tip and substrate, respectively, is suppressed by the anion added to the measurement solution. The specific hydrogen-bonding force was measured on binary mixed SAMs prepared by mixing 6-mercaptohexanoic acid with 1-hexanethiol. The individual hydrogen-bonding force between the phenylurea-modified tip and the binary mixed SAMs with various fractions of MHA was evaluated by repetitive force measurements and their statistical analyses by an autocorrelation method. We discuss the effect of diluting the COOH-terminated component in the mixed SAM on the adhesion force and the single force between the phenylurea and carboxyl groups in terms of competition between intermonolayer and intramonolayer hydrogen bonding.

3.
J Am Chem Soc ; 127(9): 3026-30, 2005 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-15740140

RESUMO

We have measured the single intermolecular force of a typical photoionizable molecule, spirobenzopyran, by means of atomic force microscopy, which has proven to be useful in measuring directly single molecular forces. The spirobenzopyran moiety was immobilized covalently on both Au-coated probe tips and substrates by use of a self-assembled monolayer of a hexanethiol derivative incorporating a terminal spirobenzopyran moiety, 1'-(6'-mercaptohexyl)-3',3'-dimethylindolino-6-nitrospiro-(2H-1-benzopyran-2,2'-indoline). Force curve measurements were carried out using the spirobenzopyran-modified probe tip and substrate under dark conditions and in situ UV light irradiation. The adhesion force observed in a polar solvent (i.e., ethanol) was increased substantially under in situ UV light irradiation, which caused photoisomerization of the spirobenzopyran moiety bound to both tip and substrate from its electrically neutral spiropyran form to the corresponding zwitterionic merocyanine one. Statistical analyses of the observed force by autocorrelation technique have revealed that the photoionization enhanced by UV light caused a remarkable increase in the single intermolecular force of the photochromic compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...