Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120477, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417362

RESUMO

The Indian coastal waters are stressed due to a multitude of factors, such as the discharge of industrial effluents, urbanization (municipal sewage), agricultural runoff, and river discharge. The coastal waters along the eastern and western seaboard of India exhibit contrasting characteristics in terms of seasonality, the magnitude of river influx, circulation pattern, and degree of anthropogenic activity. Therefore, understanding these processes and forecasting their occurrence is highly necessary to secure the health of coastal waters, habitats, marine resources, and the safety of tourists. This article introduces an integrated buoy-satellite based Water Quality Nowcasting System (WQNS) to address the unique challenges of water quality monitoring in Indian coastal waters and to boost the regional blue economy. The Indian National Centre for Ocean Information Services (INCOIS) has launched a first-of-its-kind WQNS, and positioned the buoys at two important locations along the east (Visakhapatnam) and west (Kochi) coast of India, covering a range of environmental conditions and tourist-intensive zones. These buoys are equipped with different physical-biogeochemical sensors, data telemetry systems, and integration with satellite-based observations for real-time data transmission to land. The sensors onboard these buoys continuously measure 22 water quality parameters, including surface current (speed and direction), salinity, temperature, pH, dissolved oxygen, phycocyanin, phycoerythrin, Coloured Dissolved Organic Matter, chlorophyll-a, turbidity, dissolved methane, hydrocarbon (crude and refined), scattering, pCO2 (water and air), and inorganic macronutrients (nitrite, nitrate, ammonium, phosphate, silicate). This real-time data is transmitted to a central processing facility at INCOIS, and after necessary quality control, the data is disseminated through the INCOIS website. Preliminary results from the WQNS show promising outcomes, including the short-term changes in the water column oxic and hypoxic regimes within a day in coastal waters off Kochi during the monsoon period, whereas effluxing of high levels of CO2 into the atmosphere associated with the mixing of water, driven by local depression in the coastal waters off Visakhapatnam. The system has demonstrated its ability to detect changes in the water column properties due to episodic events and mesoscale processes. Additionally, it offers valuable data for research, management, and policy development related to coastal water quality.


Assuntos
Ecossistema , Qualidade da Água , Índia , Oceanos e Mares , Nações Unidas , Monitoramento Ambiental , Água do Mar/química
2.
Mar Pollut Bull ; 197: 115696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897966

RESUMO

Seasonal upwelling and the associated incursion of hypoxic waters into the coastal zone is a widely studied topic over different upwelling zones. However, its persistence or variations over short time scales are poorly addressed. The present study, therefore, brings out a first report on hourly variations in the temperature, salinity and dissolved oxygen recorded by an environmental data buoy equipped with sensors, deployed in the nearshore waters of Alappuzha (southeastern Arabian Sea) from April to August 2022. The characteristic feature of the Alappuzha coast is the development of mud banks during the southwest monsoon, providing a tranquil environment suitable for continuous sensor-based measurements when the sea remains turbulent elsewhere. The results showed that despite an advance in the upwelling intensity, there is a significant variation in the oxygen concentration in the study domain on a diurnal scale. In general, the nearshore region was under hypoxia during the first half of the day (00:00 to 12:00 h), which increased steadily to reach normoxic and supersaturated levels during the rest of the day (12:00 to 24:00 h). Statistical analysis showed that winds significantly correlate to the coastal environment's subsurface oxygen concentration. During the morning hours, the wind was weak, and the water column remained stratified over the subsurface hypoxic water layer. The situation changed in the afternoon (12:00 h onwards), as there was a steady increase in the local wind speed (>5 m/s), which was sustained during the rest of the day. A local wind speed >5 m/s can disturb the stratification and enhance the mixing process from 12:00 to 24:00 h. The total kinetic energy of 11.5 J/m3 is the threshold for this oxygen supersaturation. These findings emphasize the role of wind-induced mixing in alleviating coastal hypoxia, highlighting the need for further biogeochemical and ecological investigations into the impacts of alternating oxic-hypoxic conditions in nearshore waters.


Assuntos
Água , Vento , Humanos , Estações do Ano , Hipóxia , Oxigênio
3.
Sci Rep ; 11(1): 20690, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667208

RESUMO

The adaptive genetic variation in response to heterogeneous habitats of the Indian Ocean was investigated in the Indian oil sardine using ddRAD sequencing to understand the subpopulation structure, stock complexity, mechanisms of resilience, and vulnerability in the face of climate change. Samples were collected from different ecoregions of the Indian ocean and ddRAD sequencing was carried out. Population genetic analyses revealed that samples from the Gulf of Oman significantly diverged from other Indian Ocean samples. SNP allele-environment correlation revealed the presence of candidate loci correlated with the environmental variables like annual sea surface temperature, chlorophyll-a, and dissolved oxygen concentration which might represent genomic regions allegedly diverging as a result of local adaptation. Larval dispersal modelling along the southwest coast of India indicated a high dispersal rate. The two major subpopulations (Gulf of Oman and Indian) need to be managed regionally to ensure the preservation of genetic diversity, which is crucial for climatic resilience.


Assuntos
Peixes/genética , Genoma/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Animais , Mudança Climática , Ecossistema , Genética Populacional/métodos , Genômica/métodos , Índia , Oceano Índico , Omã
4.
Sci Rep ; 10(1): 9081, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493917

RESUMO

Oceans are vast, dynamic, and complex ecosystems characterized by fluctuations in environmental parameters like sea surface temperature (SST), salinity, oxygen availability, and productivity. Environmental variability acts as the driver of organismal evolution and speciation as organisms strive to cope with the challenges. We investigated the evolutionary consequences of heterogeneous environmental conditions on the mitogenome of a widely distributed small pelagic fish of Indian ocean, Indian oil sardine, Sardinella longiceps. Sardines were collected from different eco-regions of the Indian Ocean and selection patterns analyzed in coding and non-coding regions. Signals of diversifying selection were observed in key functional regions involved in OXPHOS indicating OXPHOS gene regulation as the critical factor to meet enhanced energetic demands. A characteristic control region with 38-40 bp tandem repeat units under strong selective pressure as evidenced by sequence conservation and low free energy values was also observed. These changes were prevalent in fishes from the South Eastern Arabian Sea (SEAS) followed by the Northern Arabian Sea (NAS) and rare in Bay of Bengal (BoB) populations. Fishes belonging to SEAS exhibited accelerated substitution rate mainly due to the selective pressures to survive in a highly variable oceanic environment characterized by seasonal hypoxia, variable SST, and food availability.


Assuntos
Aclimatação/genética , Peixes/genética , Peixes/fisiologia , Genoma Mitocondrial/genética , Animais , Biomassa , Ecossistema , Oceano Índico , Salinidade , Temperatura
5.
Sci Rep ; 9(1): 19956, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882763

RESUMO

We investigated the seasonal spreading and transport of buoyant plume in the shelf off Kochi using Finite Volume Community Ocean Model (FVCOM). The modelled river plume typically consisted of an offshore bulge and a coastal current. The spreading of the bulge extended up to a distance of 19 km from inlet during the summer monsoon to <10 km in the spring inter-monsoon. The Kelvin number varied between 0.1 and 0.9 which revealed that the plume exhibited both the features of small and large scale plumes, resulting in a highly complicated plume pattern. During the southwest monsoon the plume fringe twisted towards the south, while during the northeast monsoon it twisted towards north according to the reversal of monsoonal winds. The fresh water transport with respect to coastal currents varied in accordance with seasonal river discharge such that the value peaked in the wet season and dropped in the dry season. During the non-realistic (no wind) condition the plume initiated barotropic and baroclinic flow, after which it was acted upon by earth's rotation so that the plume propagated in the direction of Coriolis force (towards north), as geostrophic currents. The model run 'with wind' and 'without wind' condition revealed that in the shelf off Kochi the plume is transported in accordance with monsoonal winds/currents by nullifying the effect of earth's rotation. The categorization of plume influenced area and realization of the direction of plume transport can be used for interpreting the dynamically and potentially active zones in the shelf off Kochi.


Assuntos
Monitoramento Ambiental/métodos , Água do Mar/microbiologia , Movimentos da Água , Índia , Modelos Teóricos , Rios/microbiologia , Estações do Ano , Ondas de Maré , Tempo (Meteorologia)
6.
Mar Pollut Bull ; 121(1-2): 201-215, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602311

RESUMO

Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms.


Assuntos
Temperatura , Trichodesmium , Baías , Cianobactérias , Oceanos e Mares , Dinâmica Populacional , Estudos Retrospectivos , Água do Mar
7.
Environ Monit Assess ; 187(11): 675, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26446129

RESUMO

Determining robust values for estuarine material fluxes has been a complex task and an interdisciplinary research challenge. With the advent of acoustic Doppler profilers (ADPs) having bottom-track capability and which provides three-dimensional current velocity profiles, more accurate estimation of cross-sectional fluxes is far accomplished in unsteady and bidirectional flow conditions of estuaries. This paper reports for the first time the discharge measurements conducted across Cochin inlet using ADP to examine the spring-neap variability in residual fluxes of water and nutrients during dry season. Cross-sectional current velocity profiles and salinity profiles were captured using ADP and conductivity temperature depth (CTD) instrumentation. Samples of surface and bottom water were also collected at 3-h intervals. The results indicated that there is a distinct transition from the neap to spring tides related to flow and salinity structure. The neap tide was partially mixed with large diurnal inequalities whereas the spring tide was well-mixed with symmetric tides. During ebb, an increase in the concentrations of nitrate, nitrite, phosphate, and silicate was noticed indicating upstream sources for their inputs. In contrast, elevated levels of ammonia were found in the estuary throughout the period of observation. There was net residual outflow during both tides, and the computed residual water fluxes of neap doubled that of spring. The strong ebb currents and the increased nutrient concentrations during ebb resulted in the export of all nutrients (except ammonia during spring) into the sea. The findings of this study highlight the consequences of anthropogenic interventions in the estuary and their effects on the fluxes of ecologically relevant substances.


Assuntos
Monitoramento Ambiental , Estuários , Poluentes da Água/análise , Poluição da Água/estatística & dados numéricos , Amônia/análise , Baías , Estudos Transversais , Índia , Salinidade , Estações do Ano , Temperatura
8.
Environ Monit Assess ; 187(8): 508, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26183151

RESUMO

This manuscript presents the analysis of current meter records at Kollam and Kannur along the 20-m isobaths during November-December 2005. Currents in the coastal waters are strongly influenced by winds (both local and remote forcing), tides, propagation of coastal Kelvin and Rossby waves, etc. We hypothesize that the mesoscale (spatial scales of 10-500 km and temporal scale of 10-100 days) features in ocean are also competent to alter the characteristics of coastal currents to a large extent. Analysis of sea level anomaly from the merged altimeter data reveals the existence of a large anticyclonic eddy in the southeastern Arabian Sea during the winter monsoon. The eddy moves westward with an average speed of ∼15 km day(-1) corresponding to an increase in sea level amplitude up to 28 cm. Off southwest India, the poleward flow is along the western flank of this anticyclonic eddy and the geostrophic current completes the circulation around the eddy. The eastward component of the geostrophic current at the northern edge of the eddy is bifurcated at ∼9° N: one flowing towards north and the other towards south. Current meter records at station Kollam revealed a dominant southward current due to the bifurcated southward component. The bifurcated northward component coalesced with the poleward flow along the western flank of the anticyclonic eddy. At Kannur, a poleward flow along the coast is responsible for a predominant northward trend in the observed current pattern during the initial phase of observation. A reversal in the current direction is caused by the southward-flowing geostrophic current along the eastern flank of the subsequent anticyclonic eddy centered at 73.5° E and 13° N. The stations were located at the eastern periphery of these anticyclonic eddies, where the mesoscale features overwhelm the seasonal characteristics of the West India Coastal Current (WICC).


Assuntos
Movimentos da Água , Índia , Oceano Índico , Estações do Ano , Água do Mar , Vento
9.
Environ Monit Assess ; 185(2): 1237-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22544039

RESUMO

Phytoplankton studies in early 1970s have shown the annual dominance of diatoms and a seasonal abundance of Trichodesmium in the lower reaches of the Cochin backwaters (CBW) and adjacent coastal Arabian Sea during the pre-summer monsoon period (February to May). Surprisingly, more recent literature shows a complete absence of Trichodesmium in the CBW after 1975 even though their seasonal occurrence in the adjacent coastal Arabian Sea continued without much change. In order to understand this important ecological feature, we analyzed the long-term water quality data (1965-2005) from the lower reaches of the CBW. The analyses have shown that salinity did not undergo any major change in the lower reaches over the years and values remained >30 throughout the period. In contrast, a tremendous increase was well marked in levels of nitrate (NO(3)) and phosphate (PO(4)) in the CBW after 1975 (av. 15 and 3.5 µM, respectively) compared with the period before (av. 2 and 0.9 µM, respectively). Monthly time series data collected in 2004-2005 period from the lower reaches of the CBW and coastal Arabian Sea have clearly shown that the physical characteristics like salinity, temperature, water column stability, and transparency in both regions are very similar during the pre-summer monsoon period. In contrast, the nutrient level in the CBW is several folds higher (NO(3), 8(;) PO(4), 4; SiO(4), 10; and NH(4), 19 µM) than the adjacent coastal Arabian Sea (NO(3), 0.7; PO(4), 0.5; SiO(4), 0.9; and NH(4), 0.6 µM). The historic and fresh time series data evidences a close coupling between enriched levels of nutrients and the absence of Trichodesmium in the Cochin backwaters.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental , Eutrofização , Fitoplâncton/crescimento & desenvolvimento , Estuários , Índia , Nitratos/análise , Fosfatos/análise , Salinidade , Água do Mar/química , Temperatura , Poluentes Químicos da Água/análise
10.
ScientificWorldJournal ; 2012: 972839, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22645488

RESUMO

Concentrations and distributions of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surficial sediments of the Cochin backwaters were studied during both monsoon and pre-monsoon periods. Spatial variations were in accordance with textural charaterstics and organic matter content. A principal component analysis distinguished three zones with different metal accumulation capacity: (i) highest levels in north estuary, (ii) moderate levels in central zone, and (iii) lowest levels in southern part. Trace metal enrichments are mainly due to anthropogenic contribution of industrial, domestic, and agricultural effluents, whose effect is enhanced by settling of metals due to organic flocculation and inorganic precipitation associated with salinity changes. Enrichments factors using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. An assessment of degree of pollution-categorized sediments as moderately polluted with Cu and Pb, moderately-to-heavily polluted with Zn, and heavily-to-extremely polluted with Cd. Concentrations at many sites largely exceed NOAA ERL (e.g., Cu, Cr, and Pb) or ERM (e.g., Cd, Ni, and Zn). This means that adverse effects for benthic organisms are possible or even highly probable.


Assuntos
Sedimentos Geológicos/análise , Metais/análise , Agricultura , Animais , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Geografia , Humanos , Índia , Metais/química , Compostos Orgânicos , Análise de Componente Principal , Reprodutibilidade dos Testes , Sais , Água do Mar , Poluentes Químicos da Água/análise
11.
Environ Toxicol ; 25(6): 622-33, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19852074

RESUMO

Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance of trace metal uptake was apparent within the Bay of Bengal zooplankton. There was a distinct spatial heterogeneity of metals, with highest concentrations in the upwelling zones of the southeast coast, moderate concentrations in the cyclonic eddy of the northeast coast, and lowest concentrations in the open ocean warm gyre regions. The average trace metal concentrations (µg g⁻¹) in coastal zooplankton (Fe, 44894.1 ± 12198.2; Co, 46.2 ± 4.6; Ni, 62.8 ± 6.5; Cu, 84.9 ± 6.7; Zn, 7546.8 ± 1051.7; Cd, 46.2 ± 5.6; Pb, 19.2 ± 2.6) were higher than in offshore zooplankton (Fe, 3423.4 ± 681.6; Co, 19.5 ± 3.81; Ni, 25.3 ± 7.3; Cu, 29.4 ± 4.2; Zn, 502.3 ± 124.3; Cd, 14.3 ± 2.9; Pb, 3.2 ± 2.0). A comparison of average trace metal concentrations in zooplankton from the Bay of Bengal showed enrichment of Fe, Co, Ni, Cu, Zn, Cd, and Pb in coastal zooplankton may be related to metal absorption from primary producers, and differences in metal concentrations in phytoplankton from coastal waters (upwelling zone and cyclonic eddy) compared with offshore waters (warm gyre). Zooplankton showed a great capacity for accumulations of trace metals, with average concentration factors of 4 867 929 ± 569 971, 246 757 ± 51 321, 337 180 ± 125 725, 43 480 ± 11 212, 1 046 371 ± 110 286, 601 679 ± 213 949, and 15 420 ± 9201 for Fe, Co, Ni, Cu, Zn, Cd, and Pb with respect to dissolved concentrations in coastal and offshore waters of the Bay of Bengal. © 2009 Wiley Periodicals, Inc. Environ Toxicol, 2009.


Assuntos
Metais Pesados/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Ecossistema , Oceano Índico , Metais Pesados/análise , Estações do Ano , Água do Mar/análise , Zooplâncton/química
12.
Environ Monit Assess ; 140(1-3): 231-47, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17671846

RESUMO

Seasonal variation of the hydrography along the southeast Arabian Sea is described using data collected onboard FORV Sagar Sampada in September--October 2003 (later phase of Southwest monsoon, SWM) and March--April 2004 (Spring inter monsoon, SIM). During the later phase of the SWM, upwelling was in the withdrawal phase and the frontal structure was clearer in the northern sections (13 and 15 degrees N lat) indicating strong upwelling in the area. The driving force of upwelling is identified as the combination of alongshore wind stress and remote forcing with a latitudinal variability. Although a more prominent upwelling was found in the north, a maximum surface Chlorophyll-a was found in the south (10 degrees N). During the SIM, the area was characterized by oligotrophic water with relatively high Sea Surface Temperature (>29 degrees C) and low salinity (33.8 to 35.4). During March, the surface hydrography was found to be controlled mainly by the intrusion of low-saline waters from the south, while during September by the high saline water from the north. The presence of various water masses [Arabian Sea High Salinity Water (ASHSW), Persian Gulf Water (PGW), Red Sea Water (RSW)] and their seasonal variations in the region is discussed and their decreasing influence towards the south is noted during both periods of observation. During the SWM, the dynamic topography showed the equator-ward flow of the West India Coastal Current (WICC) at the surface and a pole-ward coastal under current at sub-thermocline depth. During the SIM, surface circulation revealed the WICC flowing pole-ward north of 13 degrees N, but equator-ward flow in the south, with a clockwise circulation around the Lakshadweep High.


Assuntos
Chuva , Estações do Ano , Sudeste Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...