Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35206201

RESUMO

The tragic pandemic of COVID-19, due to the Severe Acute Respiratory Syndrome coronavirus-2 or SARS-CoV-2, has shaken the entire world, and has significantly disrupted healthcare systems in many countries. Because of the existing challenges and controversies to testing for COVID-19, improved and cost-effective methods are needed to detect the disease. For this purpose, machine learning (ML) has emerged as a strong forecasting method for detecting COVID-19 from chest X-ray images. In this paper, we used a Deep Learning Method (DLM) to detect COVID-19 using chest X-ray (CXR) images. Radiographic images are readily available and can be used effectively for COVID-19 detection compared to other expensive and time-consuming pathological tests. We used a dataset of 10,040 samples, of which 2143 had COVID-19, 3674 had pneumonia (but not COVID-19), and 4223 were normal (not COVID-19 or pneumonia). Our model had a detection accuracy of 96.43% and a sensitivity of 93.68%. The area under the ROC curve was 99% for COVID-19, 97% for pneumonia (but not COVID-19 positive), and 98% for normal cases. In conclusion, ML approaches may be used for rapid analysis of CXR images and thus enable radiologists to filter potential candidates in a time-effective manner to detect COVID-19.


Assuntos
COVID-19 , Aprendizado Profundo , Algoritmos , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Humanos , Redes Neurais de Computação , SARS-CoV-2 , Raios X
2.
Biomacromolecules ; 16(10): 3217-25, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26388289

RESUMO

Detection of specific RNA or DNA molecules by hybridization to "probe" nucleic acids via complementary base-pairing is a powerful method for analysis of biological systems. Here we describe a strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA-based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10(-11) M (10 pM) of target oligonucleotides could be detected within 15 min of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to form a target-probe duplex that would dissociate from PANI. Furthermore, this approach is robust and is capable of detecting specific RNAs in extracts from animals. This sensor system improves on previously reported strategies by transducing highly specific probe dissociation events through intrinsic properties of a conducting polymer without the need for additional labels.


Assuntos
Concentração de Íons de Hidrogênio
3.
BMC Bioinformatics ; 7 Suppl 2: S2, 2006 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17118141

RESUMO

BACKGROUND: Naturally occurring antimicrobial peptides are currently being explored as potential candidate peptide drugs. Since antimicrobial peptides are part of the innate immune system of every living organism, it is possible to discover new candidate peptides using the available genomic and proteomic data. High throughput computational techniques could also be used to virtually scan the entire peptide space for discovering out new candidate antimicrobial peptides. RESULT: We have identified a unique indexing method based on biologically distinct characteristic features of known antimicrobial peptides. Analysis of the entries in the antimicrobial peptide databases, based on our indexing method, using Fourier transformation technique revealed a distinct peak in their power spectrum. We have developed a method to mine the genomic and proteomic data, for the presence of peptides with potential antimicrobial activity, by looking for this distinct peak. We also used the Euclidean metric to rank the potential antimicrobial peptides activity. We have parallelized our method so that virtually any given protein space could be data mined, in search of antimicrobial peptides. CONCLUSION: The results show that the Fourier transform based method with the property based coding strategy could be used to scan the peptide space for discovering new potential antimicrobial peptides.


Assuntos
Anti-Infecciosos/análise , Biologia Computacional , Análise de Fourier , Peptídeos/análise , Sequência de Aminoácidos , Anti-Infecciosos/química , Bases de Dados de Proteínas , Descoberta de Drogas , Dados de Sequência Molecular , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...