Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0415822, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939343

RESUMO

Although fluoride-containing compounds are widely used to inhibit bacterial growth, the reprogramming of gene expression underlying cellular responses to fluoride, especially under anaerobic conditions, is still poorly understood. Here, we compare the genome-wide transcriptomic profiles of E. coli grown in the absence (control) or presence (20 and 70 mM) of sodium fluoride (NaF) under anaerobic conditions and assess the impact of fluoride-dependent ATP depletion on RNA turnover. Tiling array analysis revealed transcripts displaying altered abundance in response to NaF treatments. Quantile-based K-means clustering uncovered a subset of genes that were highly upregulated and then downregulated in response to increased and subsequently decreased fluoride concentrations, many of which (~40%) contained repetitive extragenic palindromic (REP) sequences. Northern blot analysis of some of these highly upregulated REP-containing transcripts (i.e., osmC, proP, efeO and yghA) confirmed their considerably enhanced abundance in response to NaF treatment. An mRNA stability analysis of osmC and yghA transcripts demonstrated that fluoride treatment slows down RNA degradation, thereby enhancing RNA stability and steady-state mRNA levels. Moreover, we demonstrate that turnover of these transcripts depends on RNase E activity and RNA degradosome. Thus, we show that NaF exerts significant effects at the whole-transcriptome level under hypoxic growth (i.e., mimicking the host environment), and fluoride can impact gene expression posttranscriptionally by slowing down ATP-dependent degradation of structured RNAs. IMPORTANCE Gram-negative Escherichia coli is a rod-shaped facultative anaerobic bacterium commonly found in microaerobic/anaerobic environments, including the dental plaques of warm-blooded organisms. These latter can be treated efficiently with fluoride-rich compounds that act as anticaries agents to prevent tooth decay. Although fluoride inhibits microbial growth by affecting metabolic pathways, the molecular mechanisms underlying its activity under anaerobic conditions remain poorly defined. Here, using genome-wide transcriptomics, we explore the impact of fluoride treatments on E. coli gene expression under anaerobic conditions. We reveal key gene clusters associated with cellular responses to fluoride and define its ATP-dependent stabilizing effects on transcripts containing repetitive extragenic palindromic sequences. We demonstrate the mechanisms controlling the RNA stability of these REP-containing mRNAs. Thus, fluoride can affect gene expression posttranscriptionally by stabilizing structured RNAs.

2.
J Bacteriol ; 202(10)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32123036

RESUMO

Escherichia coli ribosomal protein (r-protein) L4 has extraribosomal biological functions. Previously, we described L4 as inhibiting RNase E activity through protein-protein interactions. Here, we report that from stabilized transcripts regulated by L4-RNase E, mRNA levels of tnaA (encoding tryptophanase from the tnaCAB operon) increased upon ectopic L4 expression, whereas TnaA protein levels decreased. However, at nonpermissive temperatures (to inactivate RNase E), tnaA mRNA and protein levels both increased in an rne temperature-sensitive [rne(Ts)] mutant strain. Thus, L4 protein fine-tunes TnaA protein levels independently of its inhibition of RNase E. We demonstrate that ectopically expressed L4 binds with transcribed spacer RNA between tnaC and tnaA and downregulates TnaA translation. We found that deletion of the 5' or 3' half of the spacer compared to the wild type resulted in a similar reduction in TnaA translation in the presence of L4. In vitro binding of L4 to the tnaC-tnaA transcribed spacer RNA results in changes to its secondary structure. We reveal that during early stationary-phase bacterial growth, steady-state levels of tnaA mRNA increased but TnaA protein levels decreased. We further confirm that endogenous L4 binds to tnaC-tnaA transcribed spacer RNA in cells at early stationary phase. Our results reveal the novel function of L4 in fine-tuning TnaA protein levels during cell growth and demonstrate that r-protein L4 acts as a translation regulator outside the ribosome and its own operon.IMPORTANCE Some ribosomal proteins have extraribosomal functions in addition to ribosome translation function. The extraribosomal functions of several r-proteins control operon expression by binding to own-operon transcripts. Previously, we discovered a posttranscriptional, RNase E-dependent regulatory role for r-protein L4 in the stabilization of stress-responsive transcripts. Here, we found an additional extraribosomal function for L4 in regulating the tna operon by L4-intergenic spacer mRNA interactions. L4 binds to the transcribed spacer RNA between tnaC and tnaA and alters the structural conformation of the spacer RNA, thereby reducing the translation of TnaA. Our study establishes a previously unknown L4-mediated mechanism for regulating gene expression, suggesting that bacterial cells have multiple strategies for controlling levels of tryptophanase in response to varied cell growth conditions.


Assuntos
Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Proteínas Ribossômicas/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Ligação Proteica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/genética , Transcrição Gênica
3.
Proc Natl Acad Sci U S A ; 114(38): E8025-E8034, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874523

RESUMO

Escherichia coli RNase E is an essential enzyme that forms multicomponent ribonucleolytic complexes known as "RNA degradosomes." These complexes consist of four major components: RNase E, PNPase, RhlB RNA helicase, and enolase. However, the role of enolase in the RNase E/degradosome is not understood. Here, we report that presence of enolase in the RNase E/degradosome under anaerobic conditions regulates cell morphology, resulting in Ecoli MG1655 cell filamentation. Under anaerobic conditions, enolase bound to the RNase E/degradosome stabilizes the small RNA (sRNA) DicF, i.e., the inhibitor of the cell division gene ftsZ, through chaperon protein Hfq-dependent regulation. RNase E/enolase distribution changes from membrane-associated patterns under aerobic to diffuse patterns under anaerobic conditions. When the enolase-RNase E/degradosome interaction is disrupted, the anaerobically induced characteristics disappear. We provide a mechanism by which Ecoli uses enolase-bound degradosomes to switch from rod-shaped to filamentous form in response to anaerobiosis by regulating RNase E subcellular distribution, RNase E enzymatic activity, and the stability of the sRNA DicF required for the filamentous transition. In contrast to Ecoli nonpathogenic strains, pathogenic Ecoli strains predominantly have multiple copies of sRNA DicF in their genomes, with cell filamentation previously being linked to bacterial pathogenesis. Our data suggest a mechanism for bacterial cell filamentation during infection under anaerobic conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Fosfopiruvato Hidratase/metabolismo , Anaerobiose/fisiologia , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , Endorribonucleases/genética , Escherichia coli/genética , Fosfopiruvato Hidratase/genética
4.
Biopolymers ; 105(11): 832-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27422497

RESUMO

The Poland-Fixman-Freire formalism was adapted for modeling of calorimetric DNA melting profiles, and applied to plasmid pBR 322 and long random sequences. We studied the influence of the difference (HGC -HAT ) between the helix-coil transition enthalpies of AT and GC base pairs on the calorimetric melting profile and on normalized calorimetric melting profile. A strong alteration of DNA calorimetrical profile with HGC -HAT was demonstrated. In contrast, there is a relatively slight change in the normalized profiles and in corresponding ordinary (optical) normalized differential melting curves (DMCs). For fixed HGC -HAT , the average relative deviation (S) between DMC and normalized calorimetric profile, and the difference between their melting temperatures (Tcal -Tm ) are weakly dependent on peculiarities of the multipeak fine structure of DMCs. At the same time, both the deviation S and difference (Tcal -Tm ) enlarge with the temperature melting range of the helix-coil transition. It is shown that the local deviation between DMC and normalized calorimetric profile increases in regions of narrow peaks distant from the melting temperature.


Assuntos
DNA/química , Calorimetria Indireta/métodos , Desnaturação de Ácido Nucleico
5.
Anal Biochem ; 479: 28-36, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25640587

RESUMO

Many factors that change the temperature position and interval of the DNA helix-coil transition often also alter the shape of multi-peak differential melting curves (DMCs). For DNAs with a multi-peak DMC, there is no agreement on the most useful definition for the melting temperature, Tm, and temperature melting width, ΔT, of the entire DNA transition. Changes in Tm and ΔT can reflect unstable variation of the shape of the DMC as well as alterations in DNA thermal stability and heterogeneity. Here, experiments and computer modeling for DNA multi-peak DMCs varying under different factors allowed testing of several methods of defining Tm and ΔT. Indeed, some of the methods give unreasonable "jagged" Tm and ΔT dependences on varying relative concentration of DNA chemical modifications (rb), [Na(+)], and GC content. At the same time, Tm determined as the helix-coil transition average temperature, and ΔT, which is proportional to the average absolute temperature deviation from this temperature, are suitable to characterize multi-peak DMCs. They give smoothly varying theoretical and experimental dependences of Tm and ΔT on rb, [Na(+)], and GC content. For multi-peak DMCs, Tm value determined in this way is the closest to the thermodynamic melting temperature (the helix-coil transition enthalpy/entropy ratio).


Assuntos
DNA/química , Desnaturação de Ácido Nucleico , Temperatura de Transição , Animais , Composição de Bases , Cátions Monovalentes/química , Bovinos , Conformação de Ácido Nucleico , Sódio/química , Termodinâmica
6.
Proc Natl Acad Sci U S A ; 109(18): 7019-24, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22509045

RESUMO

RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane-protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E-membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1-499) binds specifically to anionic phospholipids through electrostatic interactions. The membrane-binding specificity of NRne was confirmed using circular dichroism difference spectroscopy; the dissociation constant (K(d)) for NRne binding to anionic liposomes was 298 nM. E. coli RNase G and RNase E/G homologs from phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be membrane-binding proteins. Electrostatic potentials of NRne and its homologs were found to be conserved, highly positive, and spread over a large surface area encompassing four putative membrane-binding regions identified in the "large" domain (amino acids 1-400, consisting of the RNase H, S1, 5'-sensor, and DNase I subdomains) of E. coli NRne. In vitro cleavage assay using liposome-free and liposome-bound NRne and RNA substrates BR13 and GGG-RNAI showed that NRne membrane binding altered its enzymatic activity. Circular dichroism spectroscopy showed no obvious thermotropic structural changes in membrane-bound NRne between 10 and 60 °C, and membrane-bound NRne retained its normal cleavage activity after cooling. Thus, NRne membrane binding induced changes in secondary protein structure and enzymatic activation by stabilizing the protein-folding state and increasing its binding affinity for its substrate. Our results demonstrate that RNase E-membrane interaction enhances the rate of RNA processing and decay.


Assuntos
Endorribonucleases/química , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Membrana Celular/metabolismo , Endorribonucleases/genética , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Lipossomos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Filogenia , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...