Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1866(7): 184366, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960300

RESUMO

Ginsenoside Rh2 (Rh2) is a ginseng saponin comprising a triterpene core and one unit of glucose and has attracted much attention due to its diverse biological activities. In the present study, we used small-angle X-ray diffraction, solid-state NMR, fluorescence microscopy, and MD simulations to investigate the molecular interaction of Rh2 with membrane lipids in the liquid-disordered (Ld) phase mainly composed of palmitoyloleoylphosphatidylcholine compared with those in liquid-ordered (Lo) phase mainly composed of sphingomyelin and cholesterol. The electron density profiles determined by X-ray diffraction patterns indicated that Rh2 tends to be present in the shallow interior of the bilayer in the Ld phase, while Rh2 accumulation was significantly smaller in the Lo phase. Order parameters at intermediate depths in the bilayer leaflet obtained from 2H NMR spectra and MD simulations indicated that Rh2 reduces the order of the acyl chains of lipids in the Ld phase. The dihydroxy group and glucose moiety at both ends of the hydrophobic triterpene core of Rh2 cause tilting of the molecular axis relative to the membrane normal, which may enhance membrane permeability by loosening the packing of lipid acyl chains. These features of Rh2 are distinct from steroidal saponins such as digitonin and dioscin, which exert strong membrane-disrupting activity.

2.
Bioorg Med Chem Lett ; 107: 129792, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734389

RESUMO

Ceramide 1-phosphate (C1P) is a lipid mediator that specifically binds and activates cytosolic phospholipase A2α (cPLA2α). To elucidate the structure-activity relationship of the affinity of C1P for cPLA2α in lipid environments, we prepared a series of C1P analogs containing structural modifications in the hydrophilic parts and subjected them to surface plasmon resonance (SPR). The results suggested the presence of a specific binding site for cPLA2α on the amide, 3-OH and phosphate groups in C1P structure. Especially, dihydro-C1P exhibited enhanced affinity for cPLA2α, suggesting the hydrogen bonding ability of 3-hydroxy group is important for interactions with cPLA2α. This study helps to understand the influence of specific structural moieties of C1P on the interaction with cPLA2α at the atomistic level and may lead to the design of drugs that regulate cPLA2α activation.


Assuntos
Ceramidas , Desenho de Fármacos , Ressonância de Plasmônio de Superfície , Ceramidas/química , Ceramidas/síntese química , Ceramidas/metabolismo , Relação Estrutura-Atividade , Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Humanos , Estrutura Molecular , Sítios de Ligação
3.
Biophys Chem ; 308: 107204, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412762

RESUMO

Boundary lipids surrounding membrane proteins play an essential role in protein function and structure. These protein-lipid interactions are mainly divided into electrostatic interactions between the polar amino acids of proteins and polar heads of phospholipids, and hydrophobic interactions between protein transmembrane sites and phospholipid acyl chains. Our previous report (Kawatake et al., Biochim. Biophys. Acta 1858 [2016] 2106-2115) covered a method for selectively analyzing boundary lipid interactions and showed differences in membrane protein-peripheral lipid interactions due to differences in their head group. Interactions in the hydrophobic acyl chains of phospholipids are relatively consistent among proteins, but the details of these interactions have not been elucidated. In this study, we reconstituted bacteriorhodopsin as a model protein into phospholipid membranes labeled with 2H and 13C for solid-state NMR measurement to investigate the depth-dependent effect of the head group structure on the lipid bilayer. The results showed that the position of the phospholipid near the carbonyl carbon was affected by the head group in terms of selectivity for protein surfaces, whereas in the deep interior of the bilayer near the leaflet interface, there was little difference between the head groups, indicating that the dependence of their interactions on the head group was much reduced.


Assuntos
Bacteriorodopsinas , Fosfolipídeos , Fosfolipídeos/química , Bacteriorodopsinas/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/metabolismo , Espectroscopia de Ressonância Magnética
4.
Langmuir ; 39(43): 15189-15199, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729012

RESUMO

Although lateral and inter-leaflet lipid-lipid interactions in cell membranes play roles in maintaining asymmetric lipid bilayers, the molecular basis of these interactions is largely unknown. Here, we established a method to determine the distribution ratio of phospholipids between the outer and inner leaflets of asymmetric large unilamellar vesicles (aLUVs). The trimethylammonium group, (CH3)3N+, in the choline headgroup of N-palmitoyl-sphingomyelin (PSM) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) gave rise to a relatively sharp signal in magic-angle spinning solid-state 1H NMR (MAS-ss-1H NMR). PSM and DOPC have the same headgroup structure, but one phospholipid was selectively observed by deuterating the trimethylammonium group of the other phospholipid. The addition of Pr3+ to the medium surrounding aLUVs selectively shifted the chemical shift of the (CH3)3N+ group in the outer leaflet from that in the inner leaflet, which allowed estimation of the inter-leaflet distribution ratio of the unlabeled lipid in aLUVs. Using this method, we evaluated the translocation of PSM and DOPC between the outer and inner leaflets of the cholesterol-containing aLUVs, with PSM and DOPC mostly distributed in the outer and inner leaflets, respectively, immediately after aLUV preparation; their flip and flop rates were approximately 2.7 and 6.4 × 10-6 s-1, respectively. During the passive symmetrization of aLUVs, the lipid translocation rate was decreased due to changes in the membrane order, probably through the formation of the registered liquid-ordered domains. Comparison of the result with that of symmetric LUVs revealed that lipid asymmetry may not significantly affect the lipid translocation rates, while the lateral lipid-lipid interaction may be a dominant factor in lipid translocation under these conditions. These findings highlight the importance of considering the effects of lateral lipid interactions within the same leaflet on lipid flip-flop rates when evaluating the asymmetry of phospholipids in the cell membrane.


Assuntos
Fosfolipídeos , Esfingomielinas , Fosfolipídeos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Bicamadas Lipídicas/química , Lecitinas , Lipossomas Unilamelares/química
5.
Analyst ; 148(18): 4396-4405, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551933

RESUMO

Urinalysis is attracting interest in personal healthcare management as part of a general move to improve quality of life. Urine contains various metabolites and the protein level in urine is an indicator of kidney function. In this study, a novel electrochemical sensing system based on boron-doped diamond (BDD) electrodes was developed for the detection of protein concentrations in human urine. BDD electrodes have the advantages of a wide electrochemical potential window and low non-specific adsorption, making them ideal for simple, rapid, and compact devices for home detection of bio-relevant substances. Coomassie brilliant blue (CBB), a dye that selectively and strongly binds to urine proteins, was found to be a redox-active indicator to show a decrease in its redox currents in relation to the concentration of protein in urine samples. Our detailed studies of BDD electrodes showed their limit of detection to be 2.57 µg mL-1 and that they have a linear response that ranges from 0 to 400 µg mL-1 in urine samples. We also investigated the detection of urine protein in different urine samples. Our results agreed with those obtained using conventional colorimetric analysis. We believe this to be the first study of electrochemical detection of urine protein in urine samples on BDD electrodes, which is of great significance to be able to obtain results with electrical signals rapidly compared to conventional colorimetric analysis. This CBB-BDD technique has the potential to assist healthcare management in the form of a rapid daily diagnostic test to judge whether a more detailed examination is needed.


Assuntos
Boro , Qualidade de Vida , Humanos , Boro/química , Urinálise , Eletrodos , Oxirredução
6.
Biochim Biophys Acta Biomembr ; 1865(5): 184145, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36914020

RESUMO

Saponin is the main bioactive component of the Dioscorea species, which are traditionally used for treating chronic diseases. An understanding of the interaction process of bioactive saponins with biomembranes provides insights into their development as therapeutic agents. The biological effects of saponins have been thought to be associated with membrane cholesterol (Chol). To shed light on the exact mechanisms of their interactions, we investigated the effects of diosgenyl saponins trillin (TRL) and dioscin (DSN) on the dynamic behavior of lipids and membrane properties in palmitoyloleolylphosphatidylcholine (POPC) bilayers using solid-state NMR and fluorescence spectroscopy. The membrane effects of diosgenin, a sapogenin of TRL and DSN, are similar to those of Chol, suggesting that diosgenin plays a major role in membrane binding and POPC chain ordering. The amphiphilicity of TRL and DSN enabled them to interact with POPC bilayers, regardless of Chol. In the presence of Chol, the sugar residues more prominently influenced the membrane-disrupting effects of saponins. The activity of DSN, which bears three sugar units, led to perturbation and further disruption of the membrane in the presence of Chol. However, TRL, which bears one sugar residue, increased the ordering of POPC chains while maintaining the integrity of the bilayer. This effect on the phospholipid bilayers is similar to that of cholesteryl glucoside. The influence of the number of sugars in saponin is discussed in more detail.


Assuntos
Diosgenina , Saponinas , Ursidae , Animais , Lipídeos de Membrana , Bicamadas Lipídicas/química , Açúcares , Saponinas/farmacologia
7.
Biophys Chem ; 294: 106959, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709544

RESUMO

Bacteriorhodopsin (bR), a transmembrane protein with seven α-helices, is highly expressed in the purple membrane (PM) of archaea such as Halobacterium salinarum. It is well known that bR forms two-dimensional crystals with acidic lipids such as phosphatidylglycerol phosphate methyl ester (PGP-Me)-a major component of PM lipids bearing unique chemical structures-methyl-branched alkyl chains, ether linkages, and divalent anionic head groups with two phosphodiester groups. Therefore, we aimed to determine which functional groups of PGP-Me are essential for the boundary lipids of bR and how these functionalities interact with bR. To this end, we compared various well-known phospholipids (PLs) that carry one of the structural features of PGP-Me, and evaluated the affinity of PLs to bR using the centerband-only analysis of rotor-unsynchronized spin echo (COARSE) method in solid-state NMR measurements and thermal shift assays. The results clearly showed that the branched methyl groups of alkyl chains and double negative charges in the head groups are important for PL interactions with bR. We then examined the effect of phospholipids on the monomer-trimer exchange of bR using circular dichroism (CD) spectra. The results indicated that the divalent negative charge in a head group stabilizes the trimer structure, while the branched methyl chains significantly enhance the PLs' affinity for bR, thus dispersing bR trimers in the PM even at high concentrations. Finally, we investigated the effects of PL on the proton-pumping activity of bR based on the decay rate constant of the M intermediate of a bR photocycle. The findings showed that bR activities decreased to 20% in 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), and in 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers as compared to that in PM. Meanwhile, 1,2-Diphytanoyl-sn-glycero-3-phosphate (DPhPA) bilayers bearing both negative charges and branched methyl groups preserved over 80% of the activity. These results strongly suggest that the head groups and alkyl chains of phospholipids are essential for boundary lipids and greatly influence the biological function of bR.


Assuntos
Bacteriorodopsinas , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Fosfolipídeos/química , Lipídeos de Membrana/química , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Fosfatos/metabolismo
8.
Methods Mol Biol ; 2613: 257-270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587084

RESUMO

Glycosphingolipids (GSLs) in the mammalian plasma membrane are essential for various biological events as they form glycolipid-rich membrane domains, such as lipid rafts. GSLs consist of a certain oligosaccharide head group and a ceramide tail with various lengths of acyl chains. The structure of the head group as well as the carbon number and degree of the unsaturation of the acyl chain are known to regulate the membrane distributions and interleaflet couplings of GSLs by altering physicochemical properties, such as dynamics, interactions, and cluster sizes. This chapter provides the detailed use of time-resolved fluorescence measurement for investigating the membrane properties of lactosylceramide (LacCer)-enriched domains in bilayer membranes. LacCer belongs to the neutral GSLs and is believed in forming a highly ordered phase in model membranes and biological membranes, while the details of the domain remain unclear. Here, we suggest using trans-parinaric acid (tPA) and tPA-LacCer fluorescent probes to reveal the dynamics and size of the GSL domains since they prefer to be distributed in the GSL-rich ordered phase. The fluorescence lifetime in the nanosecond timescale reveals the difference in the surrounding membrane environments, which relates to hydrocarbon chain ordering, membrane hydration, and submicrometer domain size. The fluorescence lifetime of these probes can thus provide important information on submicron- to nano-scale small GSL domains not only in model membranes but also in biological membranes.


Assuntos
Glicolipídeos , Lipossomos , Animais , Simulação de Dinâmica Molecular , Glicoesfingolipídeos/metabolismo , Membrana Celular/metabolismo , Lactosilceramidas , Mamíferos/metabolismo
9.
Anal Chem ; 94(48): 16831-16837, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36404758

RESUMO

As a working electrode, boron-doped diamond (BDD) has been studied in detail in electrochemical processes because of its superior electrochemical properties. However, these characteristics have rarely been mentioned when BDD is used as a quasi-reference electrode (QRE). Herein, we conducted a systematic investigation on BDD electrodes, with different boron-doping levels (1 and 0.1%) and different surface terminations (hydrogen and oxygen) for their application as a QRE. A BDD electrode with 1% boron and a hydrogen-terminated surface achieved the best stability. Its open-circuit potential (OCP) exhibited less than 100 mV of potential drift over 6000 s and showed a minuscule half-wave potential difference (E1/2) of 0.0037 V in 0.1 mM K3[Fe(CN)6]/1 M KCl solution before and after the OCP measurement. Based on these observations, anions are found to contribute to the potential, which we preliminarily speculate as related to the capacitance caused by electrostatic adsorption on the positively charged hydrogen-terminated surface. The repeatability of measurement was verified through continuous cyclic voltammetry tests in 0.1 mM K3[Fe(CN)6]/1 M KCl, showing a maximum E1/2 difference of 0.042 V. The contribution of the redox couples was excluded, and the repeatability was considered to originate from its surface stability. Finally, a linear response of the optimized BDD as a QRE was validated (R2 > 0.99) by determination of free chlorine and dopamine concentrations, respectively. These results consolidate the existing fundamental research on BDD electrodes and promote the possibility of its application as a QRE in harsh environments or in vivo biological monitoring.


Assuntos
Boro , Diamante , Diamante/química , Boro/química , Técnicas Eletroquímicas , Eletrodos , Hidrogênio/química
10.
Chem Phys Lipids ; 247: 105227, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35932927

RESUMO

The interaction of proteins with hydrophobic ligands in biological membranes is an important research topic in the life sciences. The hydrophobic nature of ligands, especially their lack of water solubility, often makes it difficult to experimentally investigate their interactions with proteins, thus hampering quantitative evaluation based on thermodynamic parameters. The fatty acid-binding proteins, particularly FABP3, discussed in this review can recognize fatty acids, a primary component of membrane lipids, with high affinity. The precise three-dimensional structure of fatty acids and related ligands bound in FABP3 and their interaction with the binding pocket will contribute to the understanding of accurately determining physicochemical factors that cause the expression of affinity between protein surfaces and lipids in biological membranes. During the research of FABP3, we encountered many of the problems that were widely implicated in experiments dealing with hydrophobic ligands. To address these issues, we developed experimental methodologies using X-ray crystallography, calorimetry, and surface plasmon resonance. Using these methods and computational approaches, we have obtained several insights into the interaction of hydrophobic ligands with protein binding sites. Structural and functional studies of FABP potentially lead to a better understanding of the interaction between lipids and proteins, and thus, this protein may provide one of the model systems for investigating substance transport across cell membranes and inner membrane systems.


Assuntos
Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Ligantes , Proteínas de Membrana , Ligação Proteica , Termodinâmica
11.
Langmuir ; 38(34): 10478-10491, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35984899

RESUMO

The ginsenoside Rh2 (Rh2) is a saponin of medicinal ginseng, and it has attracted much attention for its pharmacological activities. In this study, we investigated the interaction of Rh2 with biological membranes using model membranes. We examined the effects of various lipids on the membrane-disrupting activity of Rh2 and found that cholesterol and sphingomyelin (SM) had no significant effect. Furthermore, the effects of Rh2 on acyl chain packing (DPH anisotropy) and water molecule permeability (GP340 values) did not differ significantly between bilayers containing SM and saturated phosphatidylcholine. These results suggest that the formation of the liquid-ordered (Lo) phase affects the behavior of Rh2 in the membrane rather than a specific interaction of Rh2 with a particular lipid. We investigated the effects of Rh2 on the Lo and liquid-disordered (Ld) phases using surface tension measurements and fluorescence experiments. In the surface tension-area isotherms, we compared the monolayers of the Ld and Lo lipid compositions and found that Rh2 is abundantly bound to both monolayers, with the amount being greater in the Ld phase than in the Lo phase. In addition, the hydration state of the bilayers, mainly consisting of the Lo or Ld phase, showed that Rh2 tends to bind to the surface of the bilayer in both phases. At higher concentrations, Rh2 tends to bind more abundantly to the relatively shallow interior of the Ld phase than the Lo phase. The phase-dependent membrane behavior of Rh2 is probably due to the phase-selective affinity and binding mode of Rh2.


Assuntos
Saponinas , Triterpenos , Colesterol/química , Ginsenosídeos , Lecitinas , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Esfingomielinas
12.
Magn Reson Chem ; 60(10): 1005-1013, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35938541

RESUMO

2 H solid-state nuclear magnetic resonance (NMR) is a method for examining the mobility and orientation of molecules in the field of biophysics. In studies on lipid bilayer membranes, 2 H NMR is often adopted to detect a phase transition from the gel to the liquid-crystal phase, which is observed as a change in spectral shape, and to evaluate the ordering of lipid alkyl chains using quadrupole coupling values. Because the mobility of membrane lipids is highly temperature dependent, precise temperature control is a prerequisite for evaluating the physical properties of membranes. Generally, NMR instruments monitor the temperature of the variable temperature (VT) gas. The temperature inside the sample tube and the VT gas match only when the heat generated by the radio frequency (rf) pulse emitted from the coil or magic angle spinning is significantly lower than the cooling capacity of the VT gas. In other words, the sample temperature inside the tube depends on the measurement method. Therefore, in this study, we took advantage of temperature-dependent changes in the chemical shift of a paramagnetic metal-ligand complex. We designed and synthesized a deuterated ligand complex and evaluated its temperature dependence as a thermometer for 2 H solid-state NMR spectroscopy. We chose Tb, Dy, Ho, and Er as the paramagnetic central metals. We then measured the 2 H NMR spectrum of each metal complex and confirmed the 2 H chemical shift to be temperature dependent. Furthermore, with the use of the thermometer molecule with Er, we succeeded in accurately evaluating the segmental melting of an alkyl chain in lipid bilayers with 0.1°C accuracy.


Assuntos
Bicamadas Lipídicas , Termômetros , Ligantes , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Lipídeos de Membrana , Temperatura
13.
JACS Au ; 2(6): 1375-1382, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35783183

RESUMO

By means of an initial electrochemical carbon dioxide reduction reaction (eCO2RR), both the reaction current and Faradaic efficiency of the eCO2RR on boron-doped diamond (BDD) electrodes were significantly improved. Here, this effect is referred to as the self-activation of BDD. Generally, the generation of carbon dioxide radical anions (CO2 •-) is the most recognized pathway leading to the formation of hydrocarbons and oxygenated products. However, the self-activation process enabled the eCO2RR to take place at a low potential, that is, a low energy, where CO2 •- is hardly produced. In this work, we found that unidentate carbonate and carboxylic groups were identified as intermediates during self-activation. Increasing the amount of these intermediates via the self-activation process enhances the performance of eCO2RR. We further evaluated this effect in long-term experiments using a CO2 electrolyzer for formic acid production and found that the electrical-to-chemical energy conversion efficiency reached 50.2% after the BDD self-activation process.

14.
Org Biomol Chem ; 20(32): 6436-6444, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35880995

RESUMO

N-Myristoylation is a process of ubiquitous protein modification, which promotes the interaction of lipidated proteins on cell surfaces, in conjunction with reversible S-palmitoylation. We report the cooperative lipid-lipid interaction of two acyl chains of proteins, which increases the protein-membrane interaction and facilitates selective targeting of membranes containing anionic lipids. Lyn is a member of the Src family kinases distributed on the membrane surface by N-myristoyl and neighbouring S-palmitoyl chain anchors at the unique N-terminus domain. We prepared N-terminal short segments of lipidated Lyn to investigate the behaviour of each acyl chain in the lipid composition-dependent membrane interaction by solid-state nuclear magnetic resonance (NMR) analysis. Solid-state 31P-NMR studies revealed that S-palmitoylation of N-myristoylated Lyn peptides increased the interaction between peptides and phospholipid head groups, particularly with the anionic phosphatidylserine-containing bilayers. The solid-state 2H-NMR of Lyn peptides with a perdeutero N-myristoyl chain indicated an increase (0.6-0.8 Å) in the extent of the N-myristoyl chain in the presence of nearby S-palmitoyl chains, probably through the interaction via the acyl chains. The cooperative hydrocarbon chain interaction of the two acyl chains of Lyn increased membrane binding by extending the hydrocarbon chains deeper into the membrane interior, thereby promoting the peptide-membrane surface interaction between the cationic peptide side chains and the anionic lipid head groups. This lipid-driven mechanism by S-palmitoylation promotes the partition of the lipidated proteins to the cytoplasmic surface of the cell membranes and may be involved in recruiting Lyn at the signalling domains rich in anionic lipids.


Assuntos
Bicamadas Lipídicas , Quinases da Família src , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Peptídeos/química , Fosfolipídeos , Quinases da Família src/química , Quinases da Família src/metabolismo
15.
Biophys Rev ; 14(3): 655-678, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35791389

RESUMO

As a model of lipid rafts, the liquid-ordered (Lo) phase formed by sphingomyelin (SM) and cholesterol (Cho) in bilayer membranes has long attracted the attention of biophysics researchers. New approaches and methodologies have led to a better understanding of the molecular basis of the Lo domain structure. This review summarizes studies on model membrane systems consisting of SM/unsaturated phospholipid/Cho implying that the Lo phase contains SM-based nanodomains (or nano-subdomains). Some of the Lo phase properties may be attributed to these nanodomains. Several studies suggest that the nanodomains contain clustered SM molecules packed densely to form gel-phase-like subdomains of single-digit nanometer size at physiological temperatures. Cho and unsaturated lipids located in the Lo phase are likely to be concentrated at the boundaries between the subdomains. These subdomains are not readily detected in the Lo phase formed by saturated phosphatidylcholine (PC) molecules, suggesting that they are strongly stabilized by homophilic interactions specific to SM, e.g., between SM amide groups. This model for the Lo phase is supported by experiments using dihydro-SM, which is thought to have stronger homophilic interactions than SM, as well as by studies using the enantiomer of SM having opposite stereochemistry to SM at the 2 and 3 positions and by some molecular dynamics (MD) simulations of lipid bilayers containing Lo-lipids. Nanosized gel subdomains seem to play an important role in controlling membrane organization and function in biological membranes.

16.
Sci Adv ; 8(24): eabo2658, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714188

RESUMO

Amphotericin B, an antifungal drug with a long history of use, forms fungicidal ion-permeable channels across cell membranes. Using solid-state nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we experimentally elucidated the three-dimensional structure of the molecular assemblies formed by this drug in membranes in the presence of the fungal sterol ergosterol. A stable assembly consisting of seven drug molecules was observed to form an ion conductive channel. The structure is somewhat similar to the upper half of the barrel-stave model proposed in the 1970s but substantially different in the number of molecules and in their arrangement. The present structure explains many previous findings, including structure-activity relationships of the drug, which will be useful for improving drug efficacy and reducing adverse effects.

17.
Langmuir ; 38(18): 5515-5524, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35477243

RESUMO

The chain melting of lipid bilayers has often been investigated in detail using calorimetric methods, such as differential scanning calorimetry (DSC), and the resultant main transition temperature is regarded as one of the most important parameters in model membrane experiments. However, it is not always clear whether the hydrocarbon chains of lipids are gradually melting along the depth of the lipid bilayer or whether they all melt concurrently in a very narrow temperature range, as implied by DSC. In this study, we focused on stearoyl-d-sphingomyelin (SSM) as an example of raft-forming lipids. We synthesized deuterium-labeled SSMs at the 4', 10', and 16' positions, and their depth-dependent melting was measured using solid-state deuterium NMR by changing the temperature by 1.0 °C, and comparing with that observed from a saturated lipid, palmitoylstearoylphosphatidylcholine (PSPC). The results showed that SSM exhibited a characteristic depth-dependent melting, which was not observed for PSPC. The strong intermolecular hydrogen bonds between the sphingomyelin amide moiety probably caused the chain melting to start from the chain terminus through the middle part and end in the upper part. This depth-dependent melting implies that the small gel-like domains of SSM remain at temperatures slightly above the main transition temperature. These sphingomyelin features may be responsible for the biological properties of SM-based lipid rafts.


Assuntos
Bicamadas Lipídicas , Esfingomielinas , Varredura Diferencial de Calorimetria , Deutério , Bicamadas Lipídicas/química , Microdomínios da Membrana , Fosfatidilcolinas/química , Esfingomielinas/química , Temperatura
18.
Analyst ; 147(8): 1655-1662, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35311863

RESUMO

O3 and free chlorine play significant roles in disinfection and organic degradation. There are numerous reports about their mixed-use, yet detection of the residual concentrations is not easily accomplished, whilst the interactions between them remain unclear. Herein, we develop a detection method using a boron-doped diamond (BDD) electrode to achieve the simultaneous determination of O3 and free chlorine, which benefits from the unique property of the wide potential window of BDD electrodes. It is indicated that O3 can always be accurately determined at 0.35 V vs. Ag/AgCl in an acidic solution (pH = 4-5), whether or not free chlorine is present in the solution, whereas free chlorine can be precisely monitored at -0.78 V vs. Ag/AgCl only after the O3 is completely depleted. Furthermore, in a basic solution (pH = 9-10), the reduction peak of O3 at 0.57 V vs. Ag/AgCl promptly disappears accompanied by a decrease in the peak current of free chlorine at 1.41 V. All the phenomena observed in the acidic and basic solutions are concurrently confirmed in a quasi-neutral solution. Based on these complementary measurements, a mechanism is proposed, in which the O3 reduction results in partial oxidation of the BDD surface, hindering the reduction of free chlorine in the acidic mixture; whereas O3 reacts quickly with free chlorine in the basic solution, which causes the co-consumption of both of them. It is hoped these results will give us a guide as to how better utilize mixtures and more precisely simultaneously determine O3 and free chlorine in the mixture.


Assuntos
Boro , Ozônio , Boro/química , Cloro , Eletrodos , Oxirredução
19.
Biophys J ; 121(7): 1143-1155, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218738

RESUMO

Lactosylceramide (LacCer) in the plasma membranes of immune cells is an important lipid for signaling in innate immunity through the formation of LacCer-rich domains together with cholesterol (Cho). However, the properties of the LacCer domains formed in multicomponent membranes remain unclear. In this study, we examined the properties of the LacCer domains formed in Cho-containing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) membranes by deuterium solid-state NMR and fluorescence lifetimes. The potent affinity of LacCer-LacCer (homophilic interaction) is known to induce a thermally stable gel phase in the unitary LacCer bilayer. In LacCer/Cho binary membranes, Cho gradually destabilized the LacCer gel phase to form the liquid-ordered phase by its potent order effect. In the LacCer/POPC binary systems without Cho, the 2H NMR spectra of 10',10'-d2-LacCer and 18',18',18'-d3-LacCer probes revealed that LacCer was poorly miscible with POPC in the membranes and formed stable gel phases without being distributed in the liquid crystalline domain. The lamellar structure of the LacCer/POPC membrane was gradually disrupted at around 60°C, whereas the addition of Cho increased the thermal stability of the lamellarity. Furthermore, the area of the LacCer gel phase and its chain order were decreased in the LacCer/POPC/Cho ternary membranes, whereas the liquid-ordered domain, which was observed in the LacCer/Cho binary membrane, was not observed. Cho surrounding the LacCer gel domain liberated LacCer and facilitated forming the submicron to nano-scale small domains in the liquid crystalline domain of the LacCer/POPC/Cho membranes, as revealed by the fluorescence lifetimes of trans-parinaric acid and trans-parinaric acid-LacCer. Our findings on the membrane properties of the LacCer domains, particularly in the presence of Cho, would help elucidate the properties of the LacCer domains in biological membranes.


Assuntos
Fosfatidilcolinas , Fosfolipídeos , Antígenos CD , Colesterol/química , Lactosilceramidas , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfolipídeos/química
20.
Biochim Biophys Acta Biomembr ; 1863(8): 183623, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933428

RESUMO

Ganglioside GM3 in the plasma membranes suppresses cell growth by preventing the autophosphorylation of the epidermal growth factor receptor (EGFR). Biological studies have suggested that GM3 interacts with the transmembrane segment of EGFR. Further biophysical experiments are particularly important for quantitative evaluation of the peptide-glycolipid interplay in bilayer membranes using a simple reconstituted system. To examine these interactions in this way, we synthesized the transmembrane segment of EGFR bearing a nitrobenzoxadiazole fluorophore (NBD-TM) at the N-terminus. The affinity between EGFR and GM3 was evaluated based on Förster resonance energy transfer (FRET) between NBD-TM and ATTO594-labeled GM3 in bilayers where their non-specific interaction due to lateral proximity was subtracted by using NBD-labeled phospholipid. This method for selectively detecting the specific lipid-peptide interactions in model lipid bilayers disclosed that the lateral interaction between GM3 and the transmembrane segment of EGFR plays a certain role in disturbing the formation of active EGFR dimers.


Assuntos
Fator de Crescimento Epidérmico/genética , Gangliosídeo G(M3)/genética , Bicamadas Lipídicas/química , Fenômenos Biofísicos , Ciclo Celular/genética , Proliferação de Células/genética , Fator de Crescimento Epidérmico/química , Receptores ErbB/química , Receptores ErbB/genética , Transferência Ressonante de Energia de Fluorescência , Gangliosídeo G(M3)/química , Humanos , Cinética , Fosforilação/genética , Domínios Proteicos/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...