Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(6): e5023, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801214

RESUMO

Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of signaling proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We determine the expression levels of protein kinases by monitoring the fluorescence of fluorescent proteins fused to those kinases, normalized to that of co-expressed reference fluorescent proteins. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 and Src-homology 3 domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.


Assuntos
Proteínas de Choque Térmico HSP90 , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/química , Quinases da Família src/metabolismo , Quinases da Família src/química , Quinases da Família src/genética , Células HEK293 , Estabilidade Proteica , Mutação , Estabilidade Enzimática , Fluorescência
2.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106090

RESUMO

Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We monitor the fluorescence of kinases fused to a fluorescent protein relative to that of a co-expressed reference fluorescent protein. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 (SH2) and Src-homology 3 (SH3) domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.

3.
Proc Natl Acad Sci U S A ; 119(40): e2210990119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36122200

RESUMO

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available coronavirus disease 2019 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors, which block formation of the so-called heptad repeat 1 and 2 (HR1HR2) six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. We performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based and virus-based assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ∼100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a prehairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the prehairpin intermediate of the S protein.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Antivirais/química , Antivirais/farmacologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos
4.
bioRxiv ; 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35982670

RESUMO

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors which block formation of the so-called HR1HR2 six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. Here we performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based fusion, VSV-SARS-CoV-2 chimera, and authentic SARS-CoV-2 infection assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ~100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a pre-hairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the pre-hairpin intermediate of the S protein. Significance Statement: SARS-CoV-2 infection requires fusion of viral and host membranes, mediated by the viral spike glycoprotein (S). Due to the importance of viral membrane fusion, S has been a popular target for developing vaccines and therapeutics. We discovered a simple peptide that inhibits infection by all major variants of SARS-CoV-2 with nanomolar efficacies. In marked contrast, widely used shorter peptides that lack a key N-terminal extension are about 100 x less potent than this peptide. Our results suggest that a simple peptide with a suitable sequence can be a potent and cost-effective therapeutic against COVID-19 and they provide new insights at the virus entry mechanism.

5.
PLoS One ; 16(8): e0256640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34428256

RESUMO

Bag-1 is a multifunctional protein that regulates Hsp70 chaperone activity, apoptosis, and proliferation. The three major Bag-1 isoforms have different subcellular localizations and partly non-overlapping functions. To identify the detailed interaction network of each isoform, we utilized mass spectrometry-based proteomics and found that interactomes of Bag-1 isoforms contained many common proteins, with variations in their abundances. Bag-1 interactomes were enriched with proteins involved in protein processing and degradation pathways. Novel interaction partners included VCP/p97; a transitional ER ATPase, Rad23B; a shuttling factor for ubiquitinated proteins, proteasome components, and ER-resident proteins, suggesting a role for Bag-1 also in ER-associated protein degradation (ERAD). Bag-1 pull-down from cells and tissues from breast cancer patients validated these interactions and showed cancer-related prominence. Using in silico predictions we detected hotspot residues of Bag-1. Mutations of these residues caused loss of binding to protein quality control elements and impaired proteasomal activity in MCF-7 cells. Following CD147 glycosylation pattern, we showed that Bag-1 downregulated VCP/p97-dependent ERAD. Overall, our data extends the interaction map of Bag-1, and broadens its role in protein homeostasis. Targeting the interaction surfaces revealed in this study might be an effective strategy in the treatment of cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Degradação Associada com o Retículo Endoplasmático , Fatores de Transcrição/metabolismo , Basigina/metabolismo , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Humanos , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/genética , Proteína com Valosina/metabolismo
6.
Elife ; 92020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902386

RESUMO

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an oligomeric enzyme with crucial roles in neuronal signaling and cardiac function. Previously, we showed that activation of CaMKII triggers the exchange of subunits between holoenzymes, potentially increasing the spread of the active state (Stratton et al., 2014; Bhattacharyya et al., 2016). Using mass spectrometry, we show now that unphosphorylated and phosphorylated peptides derived from the CaMKII-α regulatory segment bind to the CaMKII-α hub and break it into smaller oligomers. Molecular dynamics simulations show that the regulatory segments dock spontaneously at the interface between hub subunits, trapping large fluctuations in hub structure. Single-molecule fluorescence intensity analysis of CaMKII-α expressed in mammalian cells shows that activation of CaMKII-α results in the destabilization of the holoenzyme. Our results suggest that release of the regulatory segment by activation and phosphorylation allows it to destabilize the hub, producing smaller assemblies that might reassemble to form new holoenzymes.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas/genética , Escherichia coli , Células HEK293 , Holoenzimas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Fosforilação , Proteínas/metabolismo , Transdução de Sinais/genética
7.
Elife ; 92020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32149607

RESUMO

The many variants of human Ca2+/calmodulin-dependent protein kinase II (CaMKII) differ in the lengths and sequences of disordered linkers connecting the kinase domains to the oligomeric hubs of the holoenzyme. CaMKII activity depends on the balance between activating and inhibitory autophosphorylation (on Thr 286 and Thr 305/306, respectively, in the human α isoform). Variation in the linkers could alter transphosphorylation rates within a holoenzyme and the balance of autophosphorylation outcomes. We show, using mammalian cell expression and a single-molecule assay, that the balance of autophosphorylation is flipped between CaMKII variants with longer and shorter linkers. For the principal isoforms in the brain, CaMKII-α, with a ~30 residue linker, readily acquires activating autophosphorylation, while CaMKII-ß, with a ~200 residue linker, is biased towards inhibitory autophosphorylation. Our results show how the responsiveness of CaMKII holoenzymes to calcium signals can be tuned by varying the relative levels of isoforms with long and short linkers.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Domínio Catalítico , Ativação Enzimática , Humanos , Fosforilação , Isoformas de Proteínas , Imagem Individual de Molécula
8.
J Mol Biol ; 432(4): 1199-1215, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31931009

RESUMO

Ras recruits and activates effectors that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, Raf's activation requires dimerization, which can be facilitated by Ras dimerization. Previously, we showed that active K-Ras4B dimerizes in silico and in vitro through two major interfaces: (i) ß-interface, mapped to Switch I and effector-binding regions, (ii) α-interface at the allosteric lobe. Here, we chose constitutively active K-Ras4B as our control and two double mutants (K101D and R102E; and R41E and K42D) in the α- and ß-interfaces. Two of the mutations are from The Cancer Genome Atlas (TCGA) and the Catalogue Of Somatic Mutations In Cancer (COSMIC) data sets. R41 and R102 are found in several adenocarcinomas in Ras isoforms. We performed site-directed mutagenesis, cellular localization experiments, and molecular dynamics (MD) simulations to assess the impact of the mutations on K-Ras4B dimerization and function. α-interface K101D/R102E double mutations reduced dimerization but only slightly reduced downstream phosphorylated extracellular signal-regulated kinase (ERK) (pERK) levels. While ß-interface R41E/K42D double mutations did not interfere with dimerization, they almost completely blocked K-Ras4B-mediated ERK phosphorylation. Both double mutations increased downstream phosphorylated Akt (pAkt) levels in cells. Changes in pERK and pAkt levels altered ERK- and Akt-regulated gene expressions, such as EGR1, JUN, and BCL2L11. These results underscore the role of the α-interface in K-Ras4B homodimerization and the ß-surface in effector binding. MD simulations highlight that the membrane and hypervariable region (HVR) interact with both α- and ß-interfaces of K-Ras4B mutants, respectively, inhibiting homodimerization and probably effector binding. Mutations at both interfaces interfered with mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase signaling but in different forms and extents. We conclude that dimerization is not necessary but enhances downstream MAPK signaling.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sequência de Aminoácidos , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Simulação de Dinâmica Molecular , Mutação/genética , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo
9.
PLoS One ; 15(1): e0227520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923266

RESUMO

Glucocorticoid (GR) and mineralocorticoid receptors (MR) are believed to classically bind DNA as homodimers or MR-GR heterodimers to influence gene regulation in response to pulsatile basal or stress-evoked glucocorticoid secretion. Pulsed corticosterone presentation reveals MR and GR co-occupy DNA only at the peaks of glucocorticoid oscillations, allowing interaction. GR DNA occupancy was pulsatile, while MR DNA occupancy was prolonged through the inter-pulse interval. In mouse mammary 3617 cells MR-GR interacted in the nucleus and at a chromatin-associated DNA binding site. Interactions occurred irrespective of ligand type and receptors formed complexes of higher order than heterodimers. We also detected MR-GR interactions ex-vivo in rat hippocampus. An expanded range of MR-GR interactions predicts structural allostery allowing a variety of transcriptional outcomes and is applicable to the multiple tissue types that co-express both receptors in the same cells whether activated by the same or different hormones.


Assuntos
Núcleo Celular/metabolismo , DNA/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Corticosterona/farmacologia , DNA/química , Dimerização , Hipocampo/metabolismo , Masculino , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Estrutura Quaternária de Proteína , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genética , Alinhamento de Sequência , Ritmo Ultradiano
10.
J Phys Chem B ; 121(24): 5917-5927, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28540724

RESUMO

To signal, Ras isoforms must be enriched at the plasma membrane (PM). It was suggested that phosphodiesterase-δ (PDEδ) can bind and shuttle some farnesylated Ras isoforms to the PM, but not all. Among these, interest focused on K-Ras4B, the most abundant oncogenic Ras isoform. To study PDEδ/Ras interactions, we modeled and simulated the PDEδ/K-Ras4B complex. We obtained structures, which were similar to two subsequently determined crystal structures. We next modeled and simulated complexes of PDEδ with the farnesylated hypervariable regions of K-Ras4A and N-Ras. Earlier data suggested that PDEδ extracts K-Ras4B and N-Ras from the PM, but surprisingly not K-Ras4A. Earlier analysis of the crystal structures advanced that the presence of large/charged residues adjacent to the farnesylated site precludes the PDEδ interaction. Here, we show that PDEδ can bind to farnesylated K-Ras4A and N-Ras like K-Ras4B, albeit not as strongly. This weaker binding, coupled with the stronger anchoring of K-Ras4A in the membrane (but not of electrostatically neutral N-Ras), can explain the observation why PDEδ is unable to effectively extract K-Ras4A. We thus propose that farnesylated Ras isoforms can bind PDEδ to fulfill the required PM enrichment, and argue that the different environments, PM versus solution, can resolve apparently puzzling Ras observations. These are novel insights that would not be expected based on the crystal structures alone, which provide an elegant rationale for previously puzzling observations of the differential effects of PDEδ on farnesylated Ras family proteins.


Assuntos
Membrana Celular/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Humanos , Isoformas de Proteínas , Transporte Proteico
11.
Biochem J ; 473(12): 1719-32, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27057007

RESUMO

Are the dimer structures of active Ras isoforms similar? This question is significant since Ras can activate its effectors as a monomer; however, as a dimer, it promotes Raf's activation and MAPK (mitogen-activated protein kinase) cell signalling. In the present study, we model possible catalytic domain dimer interfaces of membrane-anchored GTP-bound K-Ras4B and H-Ras, and compare their conformations. The active helical dimers formed by the allosteric lobe are isoform-specific: K-Ras4B-GTP favours the α3 and α4 interface; H-Ras-GTP favours α4 and α5. Both isoforms also populate a stable ß-sheet dimer interface formed by the effector lobe; a less stable ß-sandwich interface is sustained by salt bridges of the ß-sheet side chains. Raf's high-affinity ß-sheet interaction is promoted by the active helical interface. Collectively, Ras isoforms' dimer conformations are not uniform; instead, the isoform-specific dimers reflect the favoured interactions of the HVRs (hypervariable regions) with cell membrane microdomains, biasing the effector-binding site orientations, thus isoform binding selectivity.


Assuntos
Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica/fisiologia , Proteínas ras/química , Proteínas ras/metabolismo , Sequência de Aminoácidos , Cisteína/química , Cisteína/metabolismo , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/genética , Multimerização Proteica/genética , Estrutura Secundária de Proteína , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas ras/genética
12.
Expert Opin Ther Targets ; 20(7): 831-42, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26873344

RESUMO

INTRODUCTION: Decades of efforts have yet to yield a safe and effective drug to target KRAS-driven pancreatic, colorectal and lung cancers; particularly those driven by the highly oncogenic splice variant KRAS4B. K-Ras4B's fairly smooth surface, cancer tissue/cell heterogeneity, tolerated lipid post-translational modification exchange, as well as drug-elicited toxicity present a daunting challenge. AREAS COVERED: Within this framework, hee we focus on a new adenocarcinoma-specific drug concept. Calmodulin (CaM) binds to K-Ras4B but not to the H-Ras or N-Ras isoforms. Physiologically, in calcium- and calmodulin-rich environments such as ductal tissues, calmodulin can sequester K-Ras4B from the membrane; in cancer, CaM/Ca(2+) can replace the missing receptor tyrosine kinase (RTK) signal, acting to fully activate PI3Kα. EXPERT OPINION: An oncogenic GTP-bound K-Ras4B/CaM/PI3Kα complex is supported by available experimental and clinical data; therefore, targeting it may address a pressing therapeutic need. High resolution electron microscopy (EM) or crystal structure of the tripartite complex would allow orthosteric or allosteric drug discovery to disrupt the CaM/PI3Kα interface and thus Akt/mTOR signaling. However, since drug resistance is expected to develop, combining it with compensatory pathways, particularly those involved in cell-cycle control, appears a reasonable strategy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Adenocarcinoma/patologia , Animais , Calmodulina/metabolismo , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
13.
Chem Rev ; 116(11): 6607-65, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-26815308

RESUMO

Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.


Assuntos
Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Regulação Alostérica , Domínio Catalítico , Guanosina Trifosfato/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas ras/química
14.
Curr Opin Struct Biol ; 35: 87-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26539658

RESUMO

The increase in the number of structurally determined protein complexes strengthens template-based docking (TBD) methods for modelling protein-protein interactions (PPIs). These methods utilize the known structures of protein complexes as templates to predict the quaternary structure of the target proteins. The templates may be partial or complete structures. Interface based (partial) methods have recently gained interest due in part to the observation that the interface regions are reusable. We describe how available template interfaces can be used to obtain the structural models of protein interactions. Despite the agreement that a majority of the protein complexes can be modelled using the available Protein Data Bank (PDB) structures, a handful of studies argue that we need more template proteins to increase the structural coverage of PPIs. We also discuss the performance of the interface TBD methods at large scale, and the significance of capturing multiple conformations for improving accuracy.


Assuntos
Simulação de Acoplamento Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo
15.
Expert Rev Proteomics ; 12(6): 669-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26496174

RESUMO

Illustrated here is the critical role of oncogenic KRAS in the initiation of cancer through deregulation of the G1 cell cycle, and elements and scenarios taking place under physiological conditions and in KRAS-driven cancer. Raf, PI3K and RalGDS are major K-Ras effectors. They bind at the same Ras site. What decides the cell selection among them? This temporal and spatial decision is critical since in some cellular context the outcome of their signaling pathways may oppose each other. Key among them is the concentration of calcium/calmodulin, negative feedback loops, where a downstream member of the pathway inhibits its upstream activator and cross-inhibition, where inhibition entails blocking another pathway. These three elements, in addition to spatial restrictions by K-Ras-membrane interactions, are not independent; they integrate to provide blueprints for cell decisions. Importantly, elucidation of signaling requires not only K-Ras binary interactions; but the structures and dynamics of its multiprotein complexes.


Assuntos
Carcinogênese/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Quinases raf/metabolismo , Fator ral de Troca do Nucleotídeo Guanina/metabolismo
16.
Biophys J ; 109(6): 1227-39, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26278180

RESUMO

The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate to regulate gene expression. This study suggests models for the assembly of the SWI/SNF-A (SWItch/Sucrose-NonFermentable) complex and its interaction with the GR. We used the PRISM algorithm (PRotein Interactions by Structural Matching) to predict the three-dimensional complex structures of the target proteins. The structural models indicate that BAF57 and/or BAF250 mediate the interaction between the GR and the SWI/SNF-A complex, corroborating experimental data. They further suggest that a BAF60a/BAF155 and/or BAF60a/BAF170 interaction is critical for association between the core and variant subunits. Further, we model the interaction between GR and CCAAT-enhancer-binding proteins (C/EBPs), since the GR can regulate gene expression indirectly by interacting with other transcription factors like C/EBPs. We observe that GR can bind to bZip domains of the C/EBPα homodimer as both a monomer and dimer of the DNA-binding domain. In silico mutagenesis of the predicted interface residues confirm the importance of these residues in binding. In vivo analysis of the computationally suggested mutations reveals that double mutations of the leucine residues (L317D+L335D) may disrupt the interaction between GR and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a complex is dictated by its structure. In addition, it may help us estimate the effects of mutations on GR interactions and signaling.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Modelos Moleculares , Receptores de Glucocorticoides/metabolismo , Algoritmos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Computadores Analógicos , Dimerização , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Mutação , Ratos , Receptores de Glucocorticoides/química , Transfecção
17.
Structure ; 23(7): 1325-35, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26051715

RESUMO

Ras proteins recruit and activate effectors, including Raf, that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, activation of Raf requires its dimerization. It has been suspected that dimeric Ras may promote dimerization and activation of Raf. Here, we show that the GTP-bound catalytic domain of K-Ras4B, a highly oncogenic splice variant of the K-Ras isoform, forms stable homodimers. We observe two major dimer interfaces. The first, highly populated ß-sheet dimer interface is at the Switch I and effector binding regions, overlapping the binding surfaces of Raf, PI3K, RalGDS, and additional effectors. This interface has to be inhibitory to such effectors. The second, helical interface also overlaps the binding sites of some effectors. This interface may promote activation of Raf. Our data reveal how Ras self-association can regulate effector binding and activity, and suggest that disruption of the helical dimer interface by drugs may abate Raf signaling in cancer.


Assuntos
Guanosina Trifosfato/química , Proteínas Proto-Oncogênicas p21(ras)/química , Domínio Catalítico , Humanos , Cinética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
18.
Mol Cancer Res ; 13(9): 1265-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085527

RESUMO

KRAS4B is a highly oncogenic splice variant of the KRAS isoform. It is the only isoform associated with initiation of adenocarcinomas. Insight into why and how KRAS4B can mediate ductal adenocarcinomas, particularly of the pancreas, is vastly important for its therapeutics. Here we point out the overlooked critical role of calmodulin (CaM). Calmodulin selectively binds to GTP-bound K-Ras4B; but not to other Ras isoforms. Cell proliferation and growth require the MAPK (Raf/MEK/ERK) and PI3K/Akt pathways. We propose that Ca(2+)/calmodulin promote PI3Kα/Akt signaling, and suggest how. The elevated calcium levels clinically observed in adenocarcinomas may explain calmodulin's involvement in recruiting and stimulating PI3Kα through interaction with its n/cSH2 domains as well as K-Ras4B; importantly, it also explains why K-Ras4B specifically is a key player in ductal carcinomas, such as pancreatic (PDAC), colorectal (CRC), and lung cancers. We hypothesize that calmodulin recruits and helps activate PI3Kα at the membrane, and that this is the likely reason for Ca(2+)/calmodulin dependence in adenocarcinomas. Calmodulin can contribute to initiation/progression of ductal cancers via both PI3Kα/Akt and Raf/MEK/ERK pathways. Blocking the K-Ras4B/MAPK pathway and calmodulin/PI3Kα binding in a K-Ras4B/calmodulin/PI3Kα trimer could be a promising adenocarcinoma-specific therapeutic strategy.


Assuntos
Adenocarcinoma/metabolismo , Calmodulina/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Humanos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/genética
19.
Cell Logist ; 5(4): e1136374, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27054048

RESUMO

Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.

20.
BMC Genomics ; 15 Suppl 4: S2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25056661

RESUMO

BACKGROUND: Inflammation has significant roles in all phases of tumor development, including initiation, progression and metastasis. Interleukin-10 (IL-10) is a well-known immuno-modulatory cytokine with an anti-inflammatory activity. Lack of IL-10 allows induction of pro-inflammatory cytokines and hinders anti-tumor immunity, thereby favoring tumor growth. The IL-10 network is among the most important paths linking cancer and inflammation. The simple node-and-edge network representation is useful, but limited, hampering the understanding of the mechanistic details of signaling pathways. Structural networks complete the missing parts, and provide details. The IL-10 structural network may shed light on the mechanisms through which disease-related mutations work and the pathogenesis of malignancies. RESULTS: Using PRISM (a PRotein Interactions by Structural Matching tool), we constructed the structural network of IL-10, which includes its first and second degree protein neighbor interactions. We predicted the structures of complexes involved in these interactions, thereby enriching the available structural data. In order to reveal the significance of the interactions, we exploited mutations identified in cancer patients, mapping them onto key proteins of this network. We analyzed the effect of these mutations on the interactions, and demonstrated a relation between these and inflammation and cancer. Our results suggest that mutations that disrupt the interactions of IL-10 with its receptors (IL-10RA and IL-10RB) and α2-macroglobulin (A2M) may enhance inflammation and modulate anti-tumor immunity. Likewise, mutations that weaken the A2M-APP (amyloid precursor protein) association may increase the proliferative effect of APP through preventing ß-amyloid degradation by the A2M receptor, and mutations that abolish the A2M-Kallikrein-13 (KLK13) interaction may lead to cell proliferation and metastasis through the destructive effect of KLK13 on the extracellular matrix. CONCLUSIONS: Prediction of protein-protein interactions through structural matching can enrich the available cellular pathways. In addition, the structural data of protein complexes suggest how oncogenic mutations influence the interactions and explain their potential impact on IL-10 signaling in cancer and inflammation.


Assuntos
Inflamação/patologia , Interleucina-10/metabolismo , Neoplasias/patologia , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Biologia Computacional , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Bases de Dados de Proteínas , Humanos , Inflamação/metabolismo , Interleucina-10/química , Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-10/química , Subunidade alfa de Receptor de Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-10/metabolismo , Subunidade beta de Receptor de Interleucina-10/química , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/metabolismo , Mutagênese , Neoplasias/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Transdução de Sinais , Termodinâmica , alfa-Macroglobulinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...