Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microscopy (Oxf) ; 69(3): 141-155, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32115659

RESUMO

Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) enable the visualization of three-dimensional (3D) microstructures ranging from atomic to micrometer scales using 3D reconstruction techniques based on computed tomography algorithms. This 3D microscopy method is called electron tomography (ET) and has been utilized in the fields of materials science and engineering for more than two decades. Although atomic resolution is one of the current topics in ET research, the development and deployment of intermediate-resolution (non-atomic-resolution) ET imaging methods have garnered considerable attention from researchers. This research trend is probably not irrelevant due to the fact that the spatial resolution and functionality of 3D imaging methods of scanning electron microscopy (SEM) and X-ray microscopy have come to overlap with those of ET. In other words, there may be multiple ways to carry out 3D visualization using different microscopy methods for nanometer-scale objects in materials. From the above standpoint, this review paper aims to (i) describe the current status and issues of intermediate-resolution ET with regard to enhancing the effectiveness of TEM/STEM imaging and (ii) discuss promising applications of state-of-the-art intermediate-resolution ET for materials research with a particular focus on diffraction contrast ET for crystalline microstructures (superlattice domains and dislocations) including a demonstration of in situ dislocation tomography.

2.
Science ; 363(6434)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923195

RESUMO

Nanomaterials are critical components in the Earth system's past, present, and future characteristics and behavior. They have been present since Earth's origin in great abundance. Life, from the earliest cells to modern humans, has evolved in intimate association with naturally occurring nanomaterials. This synergy began to shift considerably with human industrialization. Particularly since the Industrial Revolution some two-and-a-half centuries ago, incidental nanomaterials (produced unintentionally by human activity) have been continuously produced and distributed worldwide. In some areas, they now rival the amount of naturally occurring nanomaterials. In the past half-century, engineered nanomaterials have been produced in very small amounts relative to the other two types of nanomaterials, but still in large enough quantities to make them a consequential component of the planet. All nanomaterials, regardless of their origin, have distinct chemical and physical properties throughout their size range, clearly setting them apart from their macroscopic equivalents and necessitating careful study. Following major advances in experimental, computational, analytical, and field approaches, it is becoming possible to better assess and understand all types and origins of nanomaterials in the Earth system. It is also now possible to frame their immediate and long-term impact on environmental and human health at local, regional, and global scales.

3.
Sci Rep ; 8(1): 6761, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712970

RESUMO

One way of expediting materials development is to decrease the need for new experiments by making greater use of published literature. Here, we use data mining and automated image analysis to gather new insights on nanoporous gold (NPG) without conducting additional experiments or simulations. NPG is a three-dimensional porous network that has found applications in catalysis, sensing, and actuation. We assemble and analyze published images from among thousands of publications on NPG. These images allow us to infer a quantitative description of NPG coarsening as a function of time and temperature, including the coarsening exponent and activation energy. They also demonstrate that relative density and ligament size in NPG are not correlated, indicating that these microstructure features are independently tunable. Our investigation leads us to propose improved reporting guidelines that will enhance the utility of future publications in the field of dealloyed materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA