Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(31): 20455-20470, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395993

RESUMO

There is a significant need for new agents to combat malaria, which resulted in ∼409,000 deaths globally in 2019. We utilized a ring distortion strategy to create complex and diverse compounds from vincamine with the goal of discovering molecules with re-engineered biological activities. We found compound 8 (V3b) to target chloroquine-resistant Plasmodium falciparum Dd2 parasites (EC50 = 1.81 ± 0.09 µM against Dd2 parasites; EC50 > 40 µM against HepG2 cells) and established structure-activity relationships for 25 related analogues. New analogue 30 (V3ss, Dd2, EC50 = 0.25 ± 0.004 µM; HepG2, EC50 > 25 µM) was found to demonstrate the most potent activity, which prevents exit on the parasite from the schizont stage of intraerythrocytic development and requires >24 h to kill P. falciparum Dd2 cells. These findings demonstrate the potential that vincamine ring distortion has toward the discovery of novel antimalarial agents and other therapies significant to human health.

2.
Infect Genet Evol ; 95: 105050, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450293

RESUMO

Triatoma dimidiata is the main vector of Trypanosoma cruzi parasites in Veracruz, Mexico, and its association with human housing appears variable. Also, in spite of a high seroprevalence of T. cruzi infection in humans, parasite transmission remains poorly understood. Therefore, we aimed to identify T. dimidiata blood feeding sources and its parasite and microbial diversity to reconstruct T. cruzi parasite transmission ecology in central Veracruz, Mexico, within a One Health/Ecohealth framework. We used a metabarcoding and deep sequencing approach of specific markers for the simultaneous identification of T. dimidiata haplogroup (ITS-2), vertebrate blood meals (12 s gene), T. cruzi parasites (mini-exon gene), and gut microbiota (bacterial 16 s). Twelve species of domestic/synanthropic animals and humans were identified as blood sources, with multiple feeding on 4.2 ± 0.4 hosts per bug. The feeding/parasite transmission network was strongly centered on humans, emphasizing a significant risk of infection. We also unambiguously confirmed the presence of TcI, TcII, TcV and TcVI DTUs in T. dimidiata, and sequences from Veracruz tended to cluster apart from parasites from other regions, suggesting some level of local differentiation. Analysis of T. dimidiata microbiota suggested that several bacterial families may be associated with the presence/absence of T. cruzi, and some of these associations may also be parasite DTU-specific. Such integrative approaches within the EcoHealth/One Health framework provide key insights on T. cruzi transmission and potential novel strategies for disease control.


Assuntos
Microbioma Gastrointestinal , Variação Genética , Triatoma/parasitologia , Trypanosoma cruzi/genética , Animais , México , Saúde Única
3.
Sci Rep ; 11(1): 12306, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112903

RESUMO

Chagas disease remains a major neglected disease in Colombia. We aimed to characterize Trypanosoma cruzi transmission networks in the Sierra Nevada de Santa Marta (SNSM) region, to shed light on disease ecology and help optimize control strategies. Triatomines were collected in rural communities and analyzed for blood feeding sources, parasite diversity and gut microbiota composition through a metagenomic and deep sequencing approach. Triatoma dimidiata predominated, followed by Rhodnius prolixus, Triatoma maculata, Rhodnius pallescens, Panstrongylus geniculatus and Eratyrus cuspidatus. Twenty-two species were identified as blood sources, resulting in an integrated transmission network with extensive connectivity among sylvatic and domestic host species. Only TcI parasites were detected, predominantly from TcIb but TcIa was also reported. The close relatedness of T. cruzi strains further supported the lack of separate transmission cycles according to habitats or triatomine species. Triatomine microbiota varied according to species, developmental stage and T. cruzi infection. Bacterial families correlated with the presence/absence of T. cruzi were identified. In conclusion, we identified a domestic transmission cycle encompassing multiple vector species and tightly connected with sylvatic hosts in the SNSM region, rather than an isolated domestic transmission cycle. Therefore, integrated interventions targeting all vector species and their contact with humans should be considered.


Assuntos
Microbioma Gastrointestinal/genética , Variação Genética , Triatoma/genética , Triatominae/genética , Animais , Doença de Chagas/genética , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Genótipo , Humanos , Insetos Vetores/genética , Grupos Populacionais , Rhodnius/patogenicidade , Triatoma/classificação , Triatominae/parasitologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade
4.
J Med Chem ; 63(20): 11756-11785, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32959656

RESUMO

There is an urgent need to develop new efficacious antimalarials to address the emerging drug-resistant clinical cases. Our previous phenotypic screening identified styrylquinoline UCF501 as a promising antimalarial compound. To optimize UCF501, we herein report a detailed structure-activity relationship study of 2-arylvinylquinolines, leading to the discovery of potent, low nanomolar antiplasmodial compounds against a Plasmodium falciparum CQ-resistant Dd2 strain, with excellent selectivity profiles (resistance index < 1 and selectivity index > 200). Several metabolically stable 2-arylvinylquinolines are identified as fast-acting agents that kill asexual blood-stage parasites at the trophozoite phase, and the most promising compound 24 also demonstrates transmission blocking potential. Additionally, the monophosphate salt of 24 exhibits excellent in vivo antimalarial efficacy in the murine model without noticeable toxicity. Thus, the 2-arylvinylquinolines represent a promising class of antimalarial drug leads.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
5.
ACS Infect Dis ; 6(2): 159-167, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31913597

RESUMO

Select natural products are ideal starting points for ring distortion, or the dramatic altering of inherently complex molecules through short synthetic pathways, to generate an array of novel compounds with diverse skeletal architectures. A major goal of our ring distortion approach is to re-engineer the biological activity of indole alkaloids to identify new compounds with diverse biological activities in areas of significance to human health and medicine. In this study, we re-engineered the biological activity of the indole alkaloid yohimbine through ring rearrangement and ring cleavage synthesis pathways to discover new series of antiplasmodial agents. One new compound, Y7j, was found to demonstrate good potency against chloroquine-resistant Plasmodium falciparum Dd2 cells (EC50 = 0.33 µM) without eliciting cytotoxicity against HepG2 cells (EC50 > 40 µM). Y7j demonstrated stage-specific action against parasites at the late ring/trophozoite stage. A series of analogues was synthesized to gain structure-activity relationship insights, and we learned that both benzyl groups of Y7j are required for activity and fine-tuning of antiplasmodial activities could be accomplished by changing substitution patterns on the benzyl moieties. This study demonstrates the potential for ring distortion to drive new discoveries and change paradigms in chemical biology and drug discovery.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Produtos Biológicos/farmacologia , Descoberta de Drogas , Plasmodium falciparum/efeitos dos fármacos , Ioimbina/química , Ioimbina/farmacologia , Produtos Biológicos/química , Cloroquina/farmacologia , Resistência a Medicamentos , Células Hep G2 , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trofozoítos/efeitos dos fármacos
6.
Insect Biochem Mol Biol ; 104: 82-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578824

RESUMO

Female Aedes aegypti mosquitoes are vectors of arboviruses that cause diseases of public health significance. The discovery of new metabolic targets is crucial for improving mosquito control strategies. We recently demonstrated that glucose oxidation supports ammonia detoxification in A. aegypti. Pyruvate kinase (PK, EC 2.7.1.40) catalyzes the last step of the glycolytic pathway. In most organisms, one or more allosteric effectors control PK activity. However, the kinetic properties and structure of PK in mosquitoes have not been previously reported. In this study, two alternatively spliced mRNA variants (AaPK1 and AaPK2) that code for PKs were identified in the A. aegypti genome. The AaPK1 mRNA variant, which encodes a 529 amino acid protein with an estimated molecular weight of ∼57 kDa, was cloned. The protein was expressed in Escherichia coli and purified. The AaPK1 kinetic properties were identified. The recombinant protein was also crystallized and its 3D structure determined. We found that alanine, glutamine, proline, serine and fructose-1-phosphate displayed a classic allosteric activation on AaPK1. Ribulose-5-phosphate acted as an allosteric inhibitor of AaPK1 but its inhibitory effect was reversed by alanine, glutamine, proline and serine. Additionally, the allosteric activation of AaPK1 by amino acids was weakened by fructose-1,6-bisphosphate, whereas the allosteric activation of AaPK1 by alanine and serine was diminished by glucose-6-phosphate. The AaPK1 structure shows the presence of fructose-1,6-bisphosphate in the allosteric site. Together, our results reveal that specific amino acids and phosphorylated sugars tightly regulate conformational dynamics and catalytic changes of AaPK1. The distinctive AaPK1 allosteric properties support a complex role for this enzyme within mosquito metabolism.


Assuntos
Aedes/enzimologia , Frutosedifosfatos/química , Glucose-6-Fosfato/química , Proteínas de Insetos/química , Piruvato Quinase/química , Aedes/genética , Regulação Alostérica/fisiologia , Processamento Alternativo/fisiologia , Animais , Feminino , Frutosedifosfatos/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose-6-Fosfato/metabolismo , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Cinética , Domínios Proteicos , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Sci Rep ; 8(1): 10333, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985421

RESUMO

Drug resistant Plasmodium falciparum parasites represent a major obstacle in our efforts to control malaria, a deadly vector borne infectious disease. This situation creates an urgent need to find and validate new drug targets to contain the spread of the disease. Several genes associated with the unfolded protein response (UPR) including Glucose-regulated Protein 78 kDa (GRP78, also known as BiP) have been deemed potential drug targets. We explored the drug target potential of GRP78, a molecular chaperone that is a regulator of the UPR, for the treatment of P. falciparum parasite infection. By screening repurposed chaperone inhibitors that are anticancer agents, we showed that GRP78 inhibition is lethal to drug-sensitive and -resistant P. falciparum parasite strains in vitro. We correlated the antiplasmodial activity of the inhibitors with their ability to bind the malaria chaperone, by characterizing their binding to recombinant parasite GRP78. Furthermore, we determined the crystal structure of the ATP binding domain of P. falciparum GRP78 with ADP and identified structural features unique to the parasite. These data suggest that P. falciparum GRP78 can be a valid drug target and that its structural differences to human GRP78 emphasize potential to generate parasite specific compounds.


Assuntos
Antimaláricos/farmacologia , Reposicionamento de Medicamentos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Resposta a Proteínas não Dobradas , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Antimaláricos/química , Antimaláricos/metabolismo , Benzamidas/farmacologia , Cristalografia por Raios X , Resistência a Medicamentos/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Imidazóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Resposta a Proteínas não Dobradas/efeitos dos fármacos
8.
Malar J ; 16(1): 292, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724415

RESUMO

BACKGROUND: The recent reduction in mortality due to malaria is being threatened by the appearance of Plasmodium falciparum parasites that are resistant to artemisinin in Southeast Asia. To limit the impact of resistant parasites and their spread across the world, there is a need to validate anti-malarial drug targets and identify new leads that will serve as foundations for future drug development programmes targeting malaria. Towards that end, the antiplasmodial potential of several Hsp90 inhibitors was characterized. Because, the Hsp90 chaperone has been suggested as a good drug target against multiple parasitic infections including malaria. RESULTS: Chemically diverse sets of Hsp90 inhibitors, evaluated in clinical trials as anti-cancer agents, were tested against the malaria parasite. Most of the compounds showed strong antiplasmodial activity in growth inhibition assays against chloroquine sensitive and resistant strains. There was a good agreement between the compound in vitro anti-parasitic activity and their affinity against the Plasmodium chaperone. The two most potent Hsp90 inhibitors also showed cytocidal activity against two P. falciparum strains. Their antiplasmodial activity affected all parasite forms during the malaria blood cycle. However, the compounds activity against the parasite showed no synergy when combined with anti-malarial drugs, like chloroquine or DHA. DISCUSSION: The Hsp90 inhibitors anti-parasitic activity correlates with their affinity to their predicted target the P. falciparum chaperone Hsp90. However, the most effective compounds also showed high affinity for a close homologue, Grp94. This association points to a mode of action for Hsp90 inhibitors that correlate compound efficacy with multi-target engagement. Besides their ability to limit parasite replication, two compounds also significantly impacted P. falciparum viability in vitro. Finally, a structural analysis suggests that the best hit represents a promising scaffold to develop parasite specific leads according. CONCLUSION: The results shown that Hsp90 inhibitors are lethal against the malaria parasite. The correlation between biochemical and in vitro data strongly supports Hsp90 as a drug target against the malaria parasite. Furthermore, at least one Hsp90 inhibitor developed as anticancer therapeutics could serve as starting point to generate P. falciparum-specific lead compounds.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/enzimologia , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Plasmodium falciparum/genética
9.
Bioorg Med Chem ; 25(10): 2754-2760, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28377170

RESUMO

This study measured the antiplasmodial activity of nine zinc-dipicolylamine (ZnDPA) complexes against three strains of Plasmodium falciparum, the causative parasite of malaria. Growth inhibition assays showed significant activity against all tested strains, with 50% inhibitory concentrations between 5 and 600nM and almost no toxic effect against host cells including healthy red blood cells. Fluorescence microscopy studies with a green-fluorescent ZnDPA probe showed selective targeting of infected red blood cells. The results suggest that ZnDPA coordination complexes are promising antiplasmodial agents with potential for targeted malaria treatment.


Assuntos
Antimaláricos/química , Complexos de Coordenação/química , Compostos Organometálicos/química , Picolinas/química , Animais , Antimaláricos/síntese química , Antimaláricos/uso terapêutico , Antimaláricos/toxicidade , Células CHO , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/toxicidade , Cricetinae , Cricetulus , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Hemólise/efeitos dos fármacos , Humanos , Malária/tratamento farmacológico , Microscopia de Fluorescência , Plasmodium falciparum/efeitos dos fármacos
10.
PLoS One ; 11(9): e0163137, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27636709

RESUMO

Most Plasmodium falciparum-detecting rapid diagnostic tests (RDTs) target histidine-rich protein 2 (PfHRP2). However, P. falciparum isolates with deletion of the pfhrp2 gene and its homolog gene, pfhrp3, have been detected. We carried out an extensive investigation on 365 P. falciparum dried blood samples collected from seven P. falciparum endemic sites in Colombia between 2003 and 2012 to genetically characterise and geographically map pfhrp2- and/or pfhrp3-negative P. falciparum parasites in the country. We found a high proportion of pfhrp2-negative parasites only in Amazonas (15/39; 38.5%), and these parasites were also pfhrp3-negative. These parasites were collected between 2008 and 2009 in Amazonas, while pfhrp3-negative parasites (157/365, 43%) were found in all the sites and from each of the sample collection years evaluated (2003 to 2012). We also found that all pfhrp2- and/or pfhrp3-negative parasites were also negative for one or both flanking genes. Six sub-population clusters were established with 93.3% (14/15) of the pfhrp2-negative parasites grouped in the same cluster and sharing the same haplotype. This haplotype corresponded with the genetic lineage BV1, a multidrug resistant strain that caused two outbreaks reported in Peru between 2010 and 2013. We found this BV1 lineage in the Colombian Amazon as early as 2006. Two new clonal lineages were identified in these parasites from Colombia: the genetic lineages EV1 and F. PfHRP2 sequence analysis revealed high genetic diversity at the amino acid level, with 17 unique sequences identified among 53 PfHRP2 sequences analysed. The use of PfHRP2-based RDTs is not recommended in Amazonas because of the high proportion of parasites with pfhrp2 deletion (38.5%), and implementation of new strategies for malaria diagnosis and control in Amazonas must be prioritised. Moreover, studies to monitor and genetically characterise pfhrp2-negative P. falciparum parasites in the Americas are warranted, given the extensive human migration occurring in the region.


Assuntos
Antígenos de Protozoários/genética , Deleção de Genes , Malária Falciparum/diagnóstico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Análise por Conglomerados , Colômbia , Genótipo , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase
11.
PLoS One ; 10(7): e0131576, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26151448

RESUMO

A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the 100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2-negative isolates in the Colombian Amazon may have implications for the use of PfHRP2-based RDTs in the region and may explain inconsistencies observed when PfHRP2-based tests and assays are performed.


Assuntos
Antígenos de Protozoários/genética , Deleção de Genes , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antígenos de Protozoários/metabolismo , Colômbia/epidemiologia , DNA de Protozoário/análise , DNA de Protozoário/genética , Testes Diagnósticos de Rotina , Eletroforese em Gel de Ágar , Genótipo , Geografia , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Reação em Cadeia da Polimerase , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...