Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5996-6006, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38504451

RESUMO

2,4-Dinitroanisole (DNAN) is a main constituent in various new insensitive munition formulations. Although DNAN is susceptible to biotic and abiotic transformations, in many environmental instances, transformation mechanisms are difficult to resolve, distinguish, or apportion on the basis solely of analysis of concentrations. We used compound-specific isotope analysis (CSIA) to investigate the characteristic isotope fractionations of the biotic (by three microbial consortia and three pure cultures) and abiotic (by 9,10-anthrahydroquinone-2-sulfonic acid [AHQS]) transformations of DNAN. The correlations of isotope enrichment factors (ΛN/C) for biotic transformations had a range of values from 4.93 ± 0.53 to 12.19 ± 1.23, which is entirely distinct from ΛN/C values reported previously for alkaline hydrolysis, enzymatic hydrolysis, reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, and UV-driven phototransformations. The ΛN/C value associated with the abiotic reduction by AHQS was 38.76 ± 2.23, within the range of previously reported values for DNAN reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, albeit the mean ΛN/C was lower. These results enhance the database of isotope effects accompanying DNAN transformations under environmentally relevant conditions, allowing better evaluation of the extents of biotic and abiotic transformations of DNAN that occur in soils, groundwaters, surface waters, and the marine environment.


Assuntos
Anisóis , Carbono , Compostos Férricos , Isótopos de Nitrogênio , Minerais , Ferro , Óxidos
2.
Phys Chem Chem Phys ; 25(36): 24745-24760, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671434

RESUMO

To successfully understand and model the environmental fate of per- and polyfluoroalkyl substances (PFAS), it is necessary to know key physicochemical properties (PChPs) such as pKa; however, measured PChPs of PFAS are scarce and of uncertain reliability. In this study, quantitative structure-activity relationships (QSARs) were developed by correlating calculated (M062-X/aug-cc-pVDZ) vibrational frequencies (VF) and corresponding infrared intensities (IRInt) to the pKa of carboxylic acids, sulfonic acids, phosphonic acids, sulfonamides, betaines, and alcohols. Antisymmetric stretching VF of the anionic species were used for all subclasses except for alcohols where the OH stretching VF performed better. The individual QSARs predicted the pKa for each subclass mostly within 0.5 pKa units from the experimental values. The inclusion of IRInt as a pKa predictor for carboxylic acids improved the results by decreasing the root-mean-square error from 0.35 to 0.25 (n > 100). Application of the developed QSARs to estimate the pKa of PFAS within each subclass revealed that the length of the perfluoroalkyl chain has minimal effect on the pKa, consistent with other models but in stark contrast with the limited experimental data available.

3.
Environ Toxicol Chem ; 42(11): 2317-2328, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37439660

RESUMO

Perfluoroalkyl carboxylic and sulfonic acids (PFCAs and PFSAs, respectively) have low acid dissociation constant values and are, therefore, deprotonated under most experimental and environmental conditions. Hence, the anionic species dominate their partitioning between water and organic phases, including octanol and phospholipid bilayers which are often used as model systems for environmental and biological matrices. However, data for solvent-water (SW) and membrane-water partition coefficients of the anion species are only available for a few per- and polyfluoroalkyl substances (PFAS). In the present study, an equation is derived using a Born-Haber cycle that relates the partition coefficients of the anions to those of the corresponding neutral species. It is shown via a thermodynamic analysis that for carboxylic acids (CAs), PFCAs, and PFSAs, the log of the solvent-water partition coefficient of the anion, log KSW (A- ), is linearly related to the log of the solvent-water partition coefficient of the neutral acid, log KSW (HA), with a unity slope and a solvent-dependent but solute-independent intercept within a PFAS (or CA) family. This finding provides a method for estimating the partition coefficients of PFCAs and PFSAs anions using the partition coefficients of the neutral species, which can be reliably predicted using quantum chemical methods. In addition, we have found that the neutral octanol-water partition coefficient, log KOW , is linearly correlated to the neutral membrane-water partition coefficient, log KMW ; therefore, log KOW , being a much easier property to estimate and/or measure, can be used to predict the neutral log KMW . Application of this approach to KOW and KMW for PFCAs and PFSAs demonstrates the utility of this methodology for evaluating reported experimental data and extending anion property data for chain lengths that are unavailable. Environ Toxicol Chem 2023;42:2317-2328. © 2023 SETAC.


Assuntos
Fluorocarbonos , Lipídeos de Membrana , Ácidos Sulfônicos , Solventes , Água/química , Ácidos Carboxílicos/análise , Octanóis , Ânions , Fluorocarbonos/química
4.
Environ Sci Technol ; 57(13): 5284-5295, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961098

RESUMO

No single linear free energy relationship (LFER) exists that can predict reduction rate constants of all munition constituents (MCs). To address this knowledge gap, we measured the reduction rates of MCs and their surrogates including nitroaromatics [NACs; 2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN), 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-dinitrotoluene (DNT)], nitramines [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroguanidine (NQ)], and azoles [3-nitro-1,2,4-triazol-5-one (NTO) and 3,4-dinitropyrazole (DNP)] by three dithionite-reduced quinones (lawsone, AQDS, and AQS). All MCs/NACs were reduced by the hydroquinones except NQ. Hydroquinone and MC speciations were varied by controlling pH, permitting the application of a speciation model to determine second-order rate constants (k) from observed pseudo-first-order rate constants. The intrinsic reactivity of MCs (oxidants) decreased upon deprotonation, while the opposite was true for hydroquinones (reductants). The rate constants spanned ∼6 orders of magnitude in the order NTO ≈ TNT > DNP > DNT ≈ DNAN ≈ 2-A-DNT > DNP- > 4-A-DNT > NTO- > RDX. LFERs developed using density functional theory-calculated electron transfer and hydrogen atom transfer energies and reported one-electron reduction potentials successfully predicted k, suggesting that these structurally diverse MCs/NACs are all reduced by hydroquinones through the same mechanism and rate-limiting step. These results increase the applicability of LFER models for predicting the fate and half-lives of MCs and related nitro compounds in reducing environments.


Assuntos
Hidrogênio , Trinitrotolueno , Elétrons , Hidroquinonas , Transporte de Elétrons
5.
Environ Sci Technol ; 56(8): 4926-4935, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35349281

RESUMO

Dissolved organic matter (DOM) comprises a sizeable portion of the redox-active constituents in the environment and is an important reductant for the abiotic transformation of nitroaromatic compounds and munition constituents (NACs/MCs). Building a predictive kinetic model for these reactions would require the energies associated with both the reduction of the NACs/MCs and the oxidation of the DOM. The heterogeneous and unknown structure of DOM, however, has prohibited reliable determination of its oxidation energies. To overcome this limitation, humic acids (HAs) were used as model DOM, and their redox moieties were modeled as a collection of quinones of different redox potentials. The reduction and oxidation energies of the NACs/MCs and hydroquinones, respectively, via hydrogen atom transfer (HAT) reactions were then calculated quantum chemically. HAT energies have been used successfully in a linear free energy relationship (LFER) to predict second-order rate constants for NAC reduction by hydroquinones. Furthermore, a linear relationship between the HAT energies and the reduction potentials of quinones was established, which allows estimation of hydroquinone reactivity (i.e., rate constants) from HA redox titration data. A training set of three HAs and two NACs/MCs was used to generate a mean HA redox profile that successfully predicted reduction kinetics in multiple HA/MC systems.


Assuntos
Substâncias Húmicas , Hidroquinonas , Matéria Orgânica Dissolvida , Hidrogênio , Cinética , Oxirredução , Quinonas
6.
Environ Sci Technol ; 55(19): 12973-12983, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34533928

RESUMO

3-Nitro-1,2,4-triazol-5-one (NTO) is a major and the most water-soluble constituent in the insensitive munition formulations IMX-101 and IMX-104. While NTO is known to undergo redox reactions in soils, its reaction with soil humic acid has not been evaluated. We studied NTO reduction by anthraquinone-2,6-disulfonate (AQDS) and Leonardite humic acid (LHA) reduced with dithionite. Both LHA and AQDS reduced NTO to 3-amino-1,2,4-triazol-5-one (ATO), stoichiometrically at alkaline pH and partially (50-60%) at pH ≤ 6.5. Due to NTO and hydroquinone speciation, the pseudo-first-order rate constants (kObs) varied by 3 orders of magnitude from pH 1.5 to 12.5 but remained constant from pH 4 to 10. This distinct pH dependency of kObs suggests that NTO reactivity decreases upon deprotonation and offsets the increasing AQDS reactivity with pH. The reduction of NTO by LHA deviated continuously from first-order behavior for >600 h. The extent of reduction increased with pH and LHA electron content, likely due to greater reactivity of and/or accessibility to hydroquinone groups. Only a fraction of the electrons stored in LHA was utilized for NTO reduction. Electron balance analysis and LHA redox potential profile suggest that the physical conformation of LHA kinetically limited NTO access to hydroquinone groups. This study demonstrates the importance of carbonaceous materials in controlling the environmental fate of NTO.


Assuntos
Substâncias Húmicas , Nitrocompostos , Antraquinonas , Minerais , Oxirredução , Triazóis
7.
Environ Sci Technol ; 54(19): 12191-12201, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32902277

RESUMO

3-Nitro-1,2,4-triazol-5-one (NTO) is an insensitive munition compound (MC) that has replaced legacy MC. NTO can be highly mobile in soil and groundwater due to its high solubility and anionic nature, yet little is known about the processes that control its environmental fate. We studied NTO reduction by the hematite-Fe2+ redox couple to assess the importance of this process for the attenuation and remediation of NTO. Fe2+(aq) was either added (type I) or formed through hematite reduction by dithionite (type II). In the presence of both hematite and Fe2+(aq), NTO was quantitatively reduced to 3-amino-1,2,4-triazol-5-one following first-order kinetics. The surface area-normalized rate constant (kSA) showed a strong pH dependency between 5.5 and 7.0 and followed a linear free energy relationship (LFER) proposed in a previous study for nitrobenzene reduction by iron oxide-Fe2+ couples, i.e., log kSA = -(pe + pH) + constant. Sulfite, a major dithionite oxidation product, lowered kSA in type II system by ∼10-fold via at least two mechanisms: by complexing Fe2+ and thereby raising pe, and by making hematite more negatively charged and hence impeding NTO adsorption. This study demonstrates the importance of iron oxide-Fe2+ in controlling NTO transformation, presents an LFER for predicting NTO reduction rate, and illustrates how solutes can shift the LFER by interacting with either iron species.


Assuntos
Compostos Férricos , Compostos Ferrosos , Nitrocompostos , Oxirredução , Triazóis
8.
Environ Sci Technol ; 53(10): 5816-5827, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31038307

RESUMO

Nitroaromatic compounds (NACs) are a class of prevalent contaminants. Abiotic reduction is an important fate process that initiates NAC degradation in the environment. Many linear free energy relationship (LFER) models have been developed to predict NAC reduction rates. Almost all LFERs to date utilize experimental aqueous-phase one-electron reduction potential ( EH1) of NAC as a predictor, and thus, their utility is limited by the availability of EH1 data. A promising new approach that utilizes computed hydrogen atom transfer (HAT) Gibbs free energy instead of EH1 as a predictor was recently proposed. In this study, we evaluated the feasibility of HAT energy for predicting NAC reduction rate constants. Using dithionite-reduced quinones, we measured the second-order rate constants for the reduction of seven NACs by three hydroquinones of different protonation states. We computed the gas-phase energies for HAT and electron affinity (EA) of NACs and established HAT- and EA-based LFERs for six hydroquinone species. The results suggest that HAT energy is a reliable predictor of NAC reduction rate constants and is superior to EA. This is the first independent, experimental validation of HAT-based LFER, a new approach that enables rate prediction for a broad range of structurally diverse NACs based solely on molecular structures.


Assuntos
Elétrons , Hidrogênio , Estrutura Molecular , Oxirredução , Quinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...