Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(7): 2401-5, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26797762

RESUMO

Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4 (abdc)6], abdc: 4,4'-azobenzene dicarboxylate) by single-crystal nanoindentation, high-pressure X-ray diffraction, density functional theory calculations, and first-principles molecular dynamics. On increasing pressure, both UiO-67 and UiO-abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo-linker of UiO-abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO-67, characterized by a large elastic modulus. The use of non-linear linkers in the synthesis of UiO-MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range.

2.
Dalton Trans ; 45(10): 4132-5, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26583777

RESUMO

A new member of the UiO-66 series of zirconium metal-organic frameworks (MOFs) is reported, and the postsynthetic bromination of its integral alkene moeities in a single-crystal to single-crystal manner is fully characterised. Nanoindentation is used to probe the bromination of unsaturated carbon-carbon bonds, in it and an analogous Zr MOF, which leads to more compliant materials with lower elastic moduli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...