Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(9): 11331-11351, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716056

RESUMO

Quantum key distribution (QKD) can be used to produce a cryptographic key whose security is guaranteed by quantum mechanics. The range of fiber-based QKD links is limited, by loss, to a few hundred kilometers, and cannot be used between mobile platforms. Free space QKD can, in principle, overcome these limitations. In practice, very narrow beam divergences must be used, requiring highly accurate pointing of the transmitting terminal to the receiver. This makes deployment very difficult. Here we describe the experimental implementation of a new type of free space QKD link, using modulating retro-reflectors (MRR). The MRR-QKD link eases the pointing requirements by more than three orders of magnitude, from microradians to degrees, while maintaining the narrow beam divergence necessary for long-range communication links. The system uses new, high extinction surface-normal multiple quantum well modulators with a modulation rate of 100 MHz. A laboratory-based BB84 QKD link using multiple quantum well MRRs is demonstrated, link budgets for possible applications are discussed, and security issues are considered.

2.
Appl Opt ; 54(31): F182-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26560607

RESUMO

In free space optical communication, photodetectors serve not only as communications receivers but also as position sensitive detectors (PSDs) for pointing, tracking, and stabilization. Typically, two separate detectors are utilized to perform these tasks, but recent advances in the fabrication and development of large-area, low-noise avalanche photodiode (APD) arrays have enabled these devices to be used both as PSDs and as communications receivers. This combined functionality allows for more flexibility and simplicity in optical system design without sacrificing the sensitivity and bandwidth performance of smaller, single-element data receivers. This work presents the development of APD arrays rated for bandwidths beyond 1 GHz with measured carrier ionization ratios of approximately 0.2 at moderate APD gains. We discuss the fabrication and characterization of three types of APD arrays along with their performance as high-speed photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA