Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Ann Hepatobiliary Pancreat Surg ; 28(1): 70-79, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38092429

RESUMO

Backgrounds/Aims: After pancreatoduodenectomy (PD), an early oral diet is recommended; however, the postoperative nutritional management of PD patients is known to be highly variable, with some centers still routinely providing parenteral nutrition (PN). Some patients who receive PN experience clinically significant complications, underscoring its judicious use. Using a large cohort, this study aimed to determine the proportion of PD patients who received postoperative nutritional support (NS), describe the nature of this support, and investigate whether receiving PN correlated with adverse perioperative outcomes. Methods: Data were extracted from the Recurrence After Whipple's study, a retrospective multicenter study of PD outcomes. Results: In total, 1,323 patients (89%) had data on their postoperative NS status available. Of these, 45% received postoperative NS, which was "enteral only," "parenteral only," and "enteral and parenteral" in 44%, 35%, and 21% of cases, respectively. Body mass index < 18.5 kg/m2 (p = 0.03), absence of preoperative biliary stenting (p = 0.009), and serum albumin < 36 g/L (p = 0.009) all correlated with receiving postoperative NS. Among those who did not develop a serious postoperative complication, i.e., those who had a relatively uneventful recovery, 20% received PN. Conclusions: A considerable number of patients who had an uneventful recovery received PN. PN is not without risk, and should be reserved for those who are unable to take an oral diet. PD patients should undergo pre- and postoperative assessment by nutrition professionals to ensure they are managed appropriately, and to optimize perioperative outcomes.

2.
Adv Anat Embryol Cell Biol ; 236: 81-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955772

RESUMO

The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.


Assuntos
Contração Muscular , Esqueleto , Lactente , Feminino , Humanos , Animais , Camundongos , Movimento , Tendões , Músculo Esquelético
3.
Health Promot Int ; 38(4)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738107

RESUMO

Higher Education Institutions (HEIs) have the potential to impact positively on the health and wellbeing of their staff and students. Using and expanding on the 'health promoting university' (HPU) platform within HEIs, this article provides a description of 'Healthy Trinity', which is an initiative underway in Trinity College Dublin, the University of Dublin. First, Healthy Trinity is contextualized in background literature including international and national policy and practice. Second, an overview of Healthy Trinity is provided including its vision and goals. Third, the article describes the steps taken relating to the identification of stakeholders and use of a network and a co-lead model. Within this approach, the article describes a partnership approach whereby responsibilities regarding health and wellbeing are shared by individuals and the institution. Fourth, the design and implementation of Healthy Trinity is discussed by taking a 'settings approach', in which the emphasis for change is placed on individual behaviours, environment, policy and organizational culture. Consideration is given to the interplay between intervention, implementation strategy and context for successful systemic implementation. The fifth element presented is the early-stage challenges encountered during implementation, such as the need to secure recurrent funding and the importance of having a direct input to the governance of the University to enable systemic change. The sixth and final component of the article is an outline of Healthy Trinity's intention to utilize a process evaluation of the early implementation phases of this complex intervention within a settings approach. Potential deliverables and impacts of this HPU initiative are presented and discussed.


Universities, such as Trinity College Dublin, the University of Dublin, can be looked at as a community of staff and students. The university community has needs in terms of health and wellbeing. 'Healthy Trinity' attempted to build strategies and practices to meet these needs for its community. The approach taken was from multiple angles and involved students and staff, focusing on both individual and organizational responsibility to promote and encourage healthy behaviours. Healthy Trinity achieved some successes as well as encountering some challenges. This article explores how the university might build upon the successes of Healthy Trinity in order to embed a culture which prioritizes health and wellbeing for the entire university community. The article also looks at the broader impact of achieving this goal, namely the University's contribution to a healthier community beyond the university setting.


Assuntos
Políticas , Instituições Acadêmicas , Humanos , Universidades , Estudantes , Promoção da Saúde
4.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35831952

RESUMO

Wnt signalling controls patterning and differentiation across many tissues and organs of the developing embryo through temporally and spatially restricted expression of multi-gene families encoding ligands, receptors, pathway modulators and intracellular components. Here, we report an integrated analysis of key genes in the 3D space of the mouse embryo across multiple stages of development. We applied a method for 3D/3D image transformation to map all gene expression patterns to a single reference embryo for each stage, providing both visual analysis and volumetric mapping allowing computational methods to interrogate the combined expression patterns. We identify territories where multiple Wnt and Fzd genes are co-expressed and cross-compare all patterns, including all seven Wnt paralogous gene pairs. The comprehensive analysis revealed regions in the embryo where no Wnt or Fzd gene expression is detected, and where single Wnt genes are uniquely expressed. This work provides insight into a previously unappreciated level of organisation of expression patterns, as well as presenting a resource that can be utilised further by the research community for whole-system analysis.


Assuntos
Proteínas Wnt , Via de Sinalização Wnt , Animais , Embrião de Mamíferos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética
5.
Diabetes Res Clin Pract ; 189: 109947, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35709911

RESUMO

AIM: Report the outcomes of pregnant women with type 1 and type 2 diabetes and to identify modifiable and non-modifiable factors associated with poor outcomes. METHODS: Retrospective analysis of pregnancy preparedness, pregnancy care and outcomes in the Republic of Ireland from 2015 to 2020 and subsequent multivariate analysis. RESULTS: In total 1104 pregnancies were included. Less than one third attended pre-pregnancy care (PPC), mean first trimester haemoglobin A1c was 7.2 ± 3.6% (55.5 ± 15.7 mmol/mol) and 52% received pre-conceptual folic acid. Poor preparation translated into poorer pregnancy outcomes. Livebirth rates (80%) were comparable to the background population however stillbirth rates were 8.7/1000 (four times the national rate). Congenital anomalies occurred in 42.5/1000 births (1.5 times the background rate). More than half of infants were large for gestational age and 47% were admitted to critical care. Multivariate analyses showed strong associations between non-attendance at PPC, poor glycaemic control and critical care admission (adjusted odds ratio of 1.68 (1.48-1.96) and 1.61 (1.43-1.86), p < 0.05 respectively) for women with type 1 diabetes. Smoking and teratogenic medications were also associated with critical care admission and hypertensive disorders of pregnancy. CONCLUSION: Pregnancy outcomes in women with diabetes are suboptimal. Significant effort is needed to optimize the modifiable factors identified in this study.


Assuntos
Diabetes Mellitus Tipo 2 , Gravidez em Diabéticas , Estudos de Coortes , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Irlanda/epidemiologia , Gravidez , Resultado da Gravidez/epidemiologia , Gravidez em Diabéticas/epidemiologia , Estudos Retrospectivos
6.
Eur J Clin Nutr ; 76(7): 1038-1040, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35027684

RESUMO

Most patients who undergo curative-intent resection for pancreatic cancer are malnourished. This correlates with poor outcomes. There are no guidelines for the nutritional management of these patients. We aimed to establish current UK practice by surveying all hepatopancreatobiliary (HPB) units. Questions covered: dietetic service, nutrition risk screening (RS), micronutrients, prehabilitation, nutritional support, pancreatic exocrine replacement therapy (PERT), and details of follow-up. Twenty-six units (83.9%) responded. Twenty-three (88.5%) provide a specialist HPB dietetic service. Twelve (52.2%) cover the entire treatment pathway. Thirteen (50.0%) routinely perform RS, eleven (42.3%) check micronutrients, and fourteen (53.8%) provide a prehabilitation programme. Twelve units (46.2%) allow nutritional supplements within 48 h of surgery, and eight (30.8%) do not allow this until at least 72 h. The use of PERT and acid-suppressing agents is highly variable. Seventeen units (65.4%) routinely provide dietitian follow-up. Practice is highly variable; robust studies are required so consensus guidelines can be formulated.


Assuntos
Desnutrição , Avaliação Nutricional , Humanos , Desnutrição/diagnóstico , Micronutrientes , Apoio Nutricional , Reino Unido
7.
Cell Tissue Res ; 388(1): 49-62, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988666

RESUMO

Spatial and temporal control of chondrogenesis generates precise, species-specific patterns of skeletal structures in the developing vertebrate limb. The pattern-template is laid down when mesenchymal cells at the core of the early limb bud condense and undergo chondrogenic differentiation. Although the mechanisms involved in organising such complex patterns are not fully understood, the interplay between BMP and Wnt signalling pathways is fundamental. Primary embryonic limb bud cells grown under high-density micromass culture conditions spontaneously create a simple cartilage nodule pattern, presenting a model to investigate pattern generation. We describe a novel analytical approach to quantify geometric properties and spatial relationships between chondrogenic condensations, utilizing the micromass model. We follow the emergence of pattern in live cultures with nodules forming at regular distances, growing and changing shape over time. Gene expression profiling supports rapid chondrogenesis and transition to hypertrophy, mimicking the process of endochondral ossification within the limb bud. Manipulating the signalling environment through addition of BMP or Wnt ligands, as well as the BMP pathway antagonist Noggin, altered the differentiation profile and nodule pattern. BMP2 addition increased chondrogenesis while WNT3A or Noggin had the opposite effect, but with distinct pattern outcomes. Titrating these pro- and anti-chondrogenic factors and examining the resulting patterns support the hypothesis that regularly spaced cartilage nodules formed by primary limb bud cells in micromass culture are influenced by the balance of Wnt and BMP signalling under a Turing-like mechanism. This study demonstrates an approach for investigating the mechanisms governing chondrogenic spatial organization using simple micromass culture.


Assuntos
Condrogênese , Botões de Extremidades , Cartilagem , Diferenciação Celular , Células Cultivadas , Condrogênese/genética , Extremidades
8.
Front Cell Dev Biol ; 9: 725018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490272

RESUMO

Embryo movement is important for tissue differentiation and the formation of functional skeletal elements during embryonic development: reduced mechanical stimulation results in fused joints and misshapen skeletal rudiments with concomitant changes in the signaling environment and gene expression profiles in both mouse and chick immobile embryos. Despite the clear relationship between movement and skeletogenesis, the precise mechanisms by which mechanical stimuli influence gene regulatory processes are not clear. The primary cilium enables cells to sense mechanical stimuli in the cellular environment, playing a crucial mechanosensory role during kidney development and in articular cartilage and bone but little is known about cilia on developing skeletal tissues. Here, we examine the occurrence, length, position, and orientation of primary cilia across developing skeletal rudiments in mouse embryos during a period of pronounced mechanosensitivity and we report differences and similarities between wildtype and muscle-less mutant (Pax3 Spd/Spd ) rudiments. Strikingly, joint regions tend to have cilia positioned and oriented away from the joint, while there was a less obvious, but still significant, preferred position on the posterior aspect of cells within the proliferative and hypertrophic zones. Regions of the developing rudiments have characteristic proportions of ciliated cells, with more cilia in the resting and joint zones. Comparing wildtype to muscle-less mutant embryos, cilia are shorter in the mutant with no significant difference in the proportion of ciliated cells. Cilia at the mutant joint were also oriented away from the joint line.

9.
Front Cell Dev Biol ; 9: 725563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540841

RESUMO

During embryonic development, tendons transform into a hypocellular tissue with robust tensile load-bearing capabilities. Previous work suggests that this mechanical transformation is due to increases in collagen fibril length and is dependent on mechanical stimulation via muscle activity. However, the relationship between changes in the microscale tissue structure and changes in macroscale tendon mechanics is still unclear. Additionally, the specific effect of mechanical stimulation on the multiscale structure-function relationships of developing tendons is also unknown. Therefore, the objective of this study was to measure the changes in tendon mechanics and structure at multiple length scales during embryonic development with and without skeletal muscle paralysis. Tensile testing of tendons from chick embryos was performed to determine the macroscale tensile modulus as well as the magnitude of the fibril strains and interfibrillar sliding with applied tissue strain. Embryos were also treated with either decamethonium bromide or pancuronium bromide to produce rigid or flaccid paralysis. Histology was performed to assess changes in tendon size, spacing between tendon subunits, and collagen fiber diameter. We found that the increase in the macroscale modulus observed with development is accompanied by an increase in the fibril:tissue strain ratio, which is consistent with an increase in collagen fibril length. Additionally, we found that flaccid paralysis reduced the macroscale tendon modulus and the fibril:tissue strain ratio, whereas less pronounced effects that were not statistically significant were observed with rigid paralysis. Finally, skeletal paralysis also reduced the size of collagen fibril bundles (i.e., fibers). Together, these data suggest that more of the applied tissue strain is transmitted to the collagen fibrils at later embryonic ages, which leads to an increase in the tendon macroscale tensile mechanics. Furthermore, our data suggest that mechanical stimulation during development is necessary to induce structural and mechanical changes at multiple physical length scales. This information provides valuable insight into the multiscale structure-function relationships of developing tendons and the importance of mechanical stimulation in producing a robust tensile load-bearing soft tissue.

10.
Dis Model Mech ; 14(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771841

RESUMO

Fetal activity in utero is a normal part of pregnancy and reduced or absent movement can lead to long-term skeletal defects, such as Fetal Akinesia Deformation Sequence, joint dysplasia and arthrogryposis. A variety of animal models with decreased or absent embryonic movements show a consistent set of developmental defects, providing insight into the aetiology of congenital skeletal abnormalities. At developing joints, defects include reduced joint interzones with frequent fusion of cartilaginous skeletal rudiments across the joint. At the spine, defects include shortening and a spectrum of curvature deformations. An important question, with relevance to possible therapeutic interventions for human conditions, is the capacity for recovery with resumption of movement following short-term immobilisation. Here, we use the well-established chick model to compare the effects of sustained immobilisation from embryonic day (E)4-10 to two different recovery scenarios: (1) natural recovery from E6 until E10 and (2) the addition of hyperactive movement stimulation during the recovery period. We demonstrate partial recovery of movement and partial recovery of joint development under both recovery conditions, but no improvement in spine defects. The joints examined (elbow, hip and knee) showed better recovery in hindlimb than forelimb, with hyperactive mobility leading to greater recovery in the knee and hip. The hip joint showed the best recovery with improved rudiment separation, tissue organisation and commencement of cavitation. This work demonstrates that movement post paralysis can partially recover specific aspects of joint development, which could inform therapeutic approaches to ameliorate the effects of human fetal immobility. This article has an associated First Person interview with the first author of the paper.


Assuntos
Embrião não Mamífero/patologia , Articulações/embriologia , Movimento , Paralisia/embriologia , Animais , Desenvolvimento Ósseo , Embrião de Galinha , Extremidades/embriologia , Extremidades/patologia
11.
Dev Dyn ; 249(4): 523-542, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31747096

RESUMO

BACKGROUND: Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton. RESULTS: We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction. CONCLUSIONS: These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Extremidades/embriologia , Esqueleto/embriologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ciclo Celular/genética , Feminino , Masculino , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esqueleto/citologia , Esqueleto/metabolismo , Proteínas de Sinalização YAP
12.
J Orthop Res ; 37(11): 2287-2296, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297860

RESUMO

Fetal movements are essential for normal development of the human skeleton. When fetal movements are reduced or restricted, infants are at higher risk of developmental dysplasia of the hip and arthrogryposis (multiple joint contractures). Joint shape abnormalities have been reported in mouse models with abnormal or absent musculature, but the effects on joint shape in such models have not been quantified or characterized in detail. In this study, embryonic mouse forelimbs and hindlimbs at a single developmental stage (Theiler Stage 23) with normal, reduced, or absent muscle were imaged in three-dimensions. Skeletal rudiments were virtually segmented and rigid image registration was used to reliably align rudiments with each other, enabling repeatable assessment and measurement of joint shape differences between normal, reduced-muscle and absent-muscle groups. We demonstrate qualitatively and quantitatively that joint shapes are differentially affected by a lack of, or reduction in, skeletal muscle, with the elbow joint being the most affected of the major limb joints. Surprisingly, the effects of reduced muscle were often more pronounced than those of absent skeletal muscle, indicating a complex relationship between muscle mass and joint morphogenesis. These findings have relevance for human developmental disorders of the skeleton in which abnormal fetal movements are implicated, particularly developmental dysplasia of the hip and arthrogryposis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2287-2296, 2019.


Assuntos
Articulações/embriologia , Músculos/fisiologia , Animais , Movimento Fetal , Imageamento Tridimensional , Camundongos , Modelos Biológicos
13.
Artigo em Inglês | MEDLINE | ID: mdl-30249778

RESUMO

Embryo movement is essential to the formation of a functional skeleton. Using mouse and chick models, we previously showed that mechanical forces influence gene regulation and tissue patterning, particularly at developing limb joints. However, the molecular mechanisms that underpin the influence of mechanical signals are poorly understood. Wnt signalling is required during skeletal development and is altered under reduced mechanical stimulation. Here, to explore Wnt signalling as a mediator of mechanical input, the expression of Wnt ligand and Fzd receptor genes in the developing skeletal rudiments was profiled. Canonical Wnt activity restricted to the developing joint was shown to be reduced under immobilization, while overexpression of activated ß-catenin following electroporation of chick embryo limbs led to joint expansion, supporting the proposed role for Wnt signalling in mechanoresponsive joint patterning. Two key findings advance our understanding of the interplay between Wnt signalling and mechanical stimuli: first, loss of canonical Wnt activity at the joint shows reciprocal, coordinated misregulation of BMP signalling under altered mechanical influence. Second, this occurs simultaneously with increased expression of several Wnt pathway component genes in a territory peripheral to the joint, indicating the importance of mechanical stimulation for a population of potential joint progenitor cells.This article is part of the Theo Murphy meeting issue 'Mechanics of Development'.


Assuntos
Osso e Ossos/embriologia , Articulações/embriologia , Proteínas Wnt/genética , Animais , Fenômenos Biomecânicos , Embrião de Galinha/embriologia , Camundongos/embriologia , Transdução de Sinais , Proteínas Wnt/metabolismo
14.
Development ; 145(5)2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29467244

RESUMO

Dynamic mechanical loading of synovial joints is necessary for normal joint development, as evidenced in certain clinical conditions, congenital disorders and animal models where dynamic muscle contractions are reduced or absent. Although the importance of mechanical forces on joint development is unequivocal, little is known about the molecular mechanisms involved. Here, using chick and mouse embryos, we observed that molecular changes in expression of multiple genes analyzed in the absence of mechanical stimulation are consistent across species. Our results suggest that abnormal joint development in immobilized embryos involves inappropriate regulation of Wnt and BMP signaling during definition of the emerging joint territories, i.e. reduced ß-catenin activation and concomitant upregulation of pSMAD1/5/8 signaling. Moreover, dynamic mechanical loading of the developing knee joint activates Smurf1 expression; our data suggest that Smurf1 insulates the joint region from pSMAD1/5/8 signaling and is essential for maintenance of joint progenitor cell fate.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Articulações/embriologia , Articulações/metabolismo , Movimento/fisiologia , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Cartilagem Articular/embriologia , Cartilagem Articular/metabolismo , Diferenciação Celular/genética , Embrião de Galinha , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética , beta Catenina/genética , beta Catenina/metabolismo
15.
J Mech Behav Biomed Mater ; 77: 734-744, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803705

RESUMO

The tension/compression asymmetry observed in the stress-stretch response of skeletal muscle is not well understood. The collagen network in the extracellular matrix (ECM) almost certainly plays a major role, but the details are unknown. This paper reports qualitatively and quantitatively on skeletal muscle ECM reorganization during applied deformation using confocal imaging of collagen through use of a fluorescently-tagged specific collagen binding protein (CNA35-EGFP) of porcine and chicken muscle samples under tensile and compressive deformation in both the fibre and cross-fibre directions. This reveals the overall three-dimensional structure of collagen in perimysium in planes perpendicular and parallel to the muscle fibres in both species. Furthermore, there is clear evidence of the reorganization of these structures under compression and tension applied in both the muscle fibre and cross-fibre directions. These observations improve our understanding of perimysium structure and response to three-dimensional deformations and are an important basis for constitutive models of passive skeletal muscle. Although overall behaviour was similar, some differences in perimysium structure were observed between chicken and porcine muscle tissue. Further work is required to better understand which structures are responsible for the tension and compression stress-strain asymmetry previously observed in the mechanical response of passive skeletal muscle.


Assuntos
Colágeno/química , Músculo Esquelético/fisiologia , Estresse Mecânico , Resistência à Tração , Animais , Fenômenos Biomecânicos , Bovinos , Galinhas , Matriz Extracelular/química , Feminino , Microscopia Eletrônica de Varredura , Pressão , Especificidade da Espécie , Suínos
16.
J Mech Behav Biomed Mater ; 66: 37-44, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27829194

RESUMO

Detection and visualisation of Collagen structure are important to understand the relationship between mechanical behaviour and microstructure in skeletal muscle since Collagen is the main structural protein in animal connective tissues, and is primarily responsible for their passive load-bearing properties. In the current study, the direct detection and visualization of Collagen using fluorescently tagged CNA35 binding protein (fused to EGFP or tdTomato) is reported for the first time on fixed skeletal muscle tissue. This Technical Note also establishes a working protocol by examining tissue preparation, dilution factor, exposure time etc. for sensitivity and specificity. Penetration of the binding protein into intact mature skeletal muscle was found to be very limited, but detection works well on tissue sections with higher sensitivity on wax embedded sections compared to frozen sections. CNA35 fused to tdTomato has a higher sensitivity than CNA35 fused to EGFP but both show specific detection. Best results were obtained with 15µm wax embedded sections, with blocking of non-specific binding in 1% BSA and antigen retrieval in Sodium Citrate. There was a play-off between dilution of the binding protein and time of incubation but both CNA35-tdTomato and CNA35-EGFP worked well with approximately 100µg/ml of purified protein with overnight incubation, while CNA35-tdTomato could be utilized at 5 fold less concentration. This approach can be applied to study the relationship between skeletal muscle micro-structure and to observe mechanical response to applied deformation. It can be used more broadly to detect Collagen in a variety of fixed tissues, useful for structure-functions studies, constitutive modelling, tissue engineering and assessment of muscle tissue pathologies.


Assuntos
Colágeno/análise , Músculo Esquelético/ultraestrutura , Animais , Proteínas de Transporte , Galinhas , Corantes Fluorescentes , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão , Suínos
17.
Cell Tissue Res ; 368(1): 47-59, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27770257

RESUMO

Chondrogenesis in vivo is precisely controlled in time and space. The entire limb skeleton forms from cells at the core of the early limb bud that condense and undergo chondrogenic differentiation. Whether they form stable cartilage at the articular surface of the joint or transient cartilage that progresses to hypertrophy as endochondral bone, replacing the cartilage template of the skeletal rudiment, is spatially controlled over several days in the embryo. Here, we follow the differentiation of cells taken from the early limb bud (embryonic day 11.5), grown in high-density micromass culture and show that a self-organising pattern of evenly spaced cartilage nodules occurs spontaneously in growth medium. Although chondrogenesis is enhanced by addition of BMP6 to the medium, the spatial pattern of nodule formation is disrupted. We show rapid progression of the entire nodule to hypertrophy in culture and therefore loss of the local signals required to direct formation of stable cartilage. Dynamic hydrostatic pressure, which we have previously predicted to be a feature of the forming embryonic joint region, had a stabilising effect on chondrogenesis, reducing expression of hypertrophic marker genes. This demonstrates the use of micromass culture as a relatively simple assay to compare the effect of both biophysical and molecular signals on spatial and temporal control of chondrogenesis that could be used to examine the response of different types of progenitor cell, both adult- and embryo-derived.


Assuntos
Técnicas de Cultura de Células/métodos , Condrogênese , Pressão Hidrostática , Botões de Extremidades/citologia , Botões de Extremidades/embriologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Condrogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipertrofia , Camundongos
18.
J Mech Behav Biomed Mater ; 62: 468-480, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27281164

RESUMO

The mechanics of passive skeletal muscle are important in impact biomechanics, surgical simulation, and rehabilitation engineering. Existing data from porcine tissue has shown a significant tension/compression asymmetry, which is not captured by current constitutive modelling approaches using a single set of material parameters, and an adequate explanation for this effect remains elusive. In this paper, the passive elastic deformation properties of chicken pectoralis muscle are assessed for the first time, to provide deformation data on a skeletal muscle which is very different to porcine tissue. Uniaxial, quasi-static compression and tensile tests were performed on fresh chicken pectoralis muscle in the fibre and cross-fibre directions, and at 45° to the fibre direction. Results show that chicken muscle elastic behaviour is nonlinear and anisotropic. The tensile stress-stretch response is two orders of magnitude larger than in compression for all directions tested, which reflects the tension/compression asymmetry previously observed in porcine tissue. In compression the tissue is stiffest in the cross-fibre direction. However, tensile deformation applied at 45° gives the stiffest response, and this is different to previous findings relating to porcine tissue. Chicken muscle tissue is most compliant in the fibre direction for both tensile and compressive applied deformation. Generally, a small percentage of fluid exudation was observed in the compressive samples. In the future these data will be combined with microstructural analysis to assess the architectural basis for the tension/compression asymmetry now observed in two different species of skeletal muscle.


Assuntos
Elasticidade , Músculos Peitorais/fisiologia , Animais , Anisotropia , Fenômenos Biomecânicos , Galinhas/fisiologia , Pressão , Estresse Mecânico
19.
Am J Physiol Renal Physiol ; 311(1): F35-45, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27122540

RESUMO

Diabetic nephropathy is the most common microvascular complication of diabetes mellitus, manifesting as mesangial expansion, glomerular basement membrane thickening, glomerular sclerosis, and progressive tubulointerstitial fibrosis leading to end-stage renal disease. Here we describe the functional characterization of Wnt6, whose expression is progressively lost in diabetic nephropathy and animal models of acute tubular injury and renal fibrosis. We have shown prominent Wnt6 and frizzled 7 (FzD7) expression in the mesonephros of the developing mouse kidney, suggesting a role for Wnt6 in epithelialization. Importantly, TCF/Lef reporter activity is also prominent in the mesonephros. Analysis of Wnt family members in human renal biopsies identified differential expression of Wnt6, correlating with severity of the disease. In animal models of tubular injury and fibrosis, loss of Wnt6 was evident. Wnt6 signals through the canonical pathway in renal epithelial cells as evidenced by increased phosphorylation of GSK3ß (Ser9), nuclear accumulation of ß-catenin and increased TCF/Lef transcriptional activity. FzD7 was identified as a putative receptor of Wnt6. In vitro Wnt6 expression leads to de novo tubulogenesis in renal epithelial cells grown in three-dimensional culture. Importantly, Wnt6 rescued epithelial cell dedifferentiation in response to transforming growth factor-ß (TGF-ß); Wnt6 reversed TGF-ß-mediated increases in vimentin and loss of epithelial phenotype. Wnt6 inhibited TGF-ß-mediated p65-NF-κB nuclear translocation, highlighting cross talk between the two pathways. The critical role of NF-κB in the regulation of vimentin expression was confirmed in both p65(-/-) and IKKα/ß(-/-) embryonic fibroblasts. We propose that Wnt6 is involved in epithelialization and loss of Wnt6 expression contributes to the pathogenesis of renal fibrosis.


Assuntos
Diferenciação Celular/genética , Nefropatias/genética , Nefropatias/patologia , Rim/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/fisiologia , Animais , Células Epiteliais/patologia , Feminino , Fibrose , Receptores Frizzled , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas I-kappa B/genética , Rim/embriologia , Nefropatias/induzido quimicamente , Túbulos Renais/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Fosforilação , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Fator de Transcrição RelA/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Vimentina/biossíntese
20.
Pediatr Surg Int ; 32(1): 29-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26547717

RESUMO

BACKGROUND: Tracheo-oesophageal malformations result from disturbed foregut separation during early development. The notochord, a specialised embryonic structure, forms immediately adjacent to the dividing foregut. In the Adriamycin mouse model of oesophageal atresia, foregut and notochord abnormalities co-exist, and the site and severity of foregut malformations closely correlate to the position and extent of the notochord defects. Notochord and foregut abnormalities also co-exist in the Noggin Knockout mouse as well in a small number of human cases. The notochord is a source of powerful molecular signals during early embryogenesis, being particularly important for neural crest development. The influence of notochord signaling on the adjacent foregut is not known. The purpose of this study was to examine the impact of notochord manipulation on foregut separation using a robust 3D explant method for culturing isolated foregut which permits oeosphageal and tracheal formation in vitro. METHODS: Foregut was micro-dissected from embryonic day 9 mice (License B100/4447 Irish Medicines Board), embedded in collagen and cultured for 48 h with native notochord intact (n = 6), notochord removed (n = 10) or additional notochord transplanted from stage matched controls (n = 8). Specimens were analysed for foregut morphology and molecular patterning using immunohistochemistry for Hnf3b (an endoderm marker) and Sox2 (a notochord and oesophageal marker) on cryosections. RESULTS: Foregut separation into distinct oesophagus and trachea was observed in isolated foregut specimens with or without their native notochord. In specimens with additional notochord transplants, foregut morphology and molecular patterning were comparable to controls whether or not the native notochord was maintained. In particular foregut separation was not disrupted by the transplantation of additional notochord at the dorsal foregut endoderm. CONCLUSION: The relationship between the embryonic foregut and notochord is complex and ill-defined; however, the notochord does not contribute essentially to oesophagus and trachea formation beyond E9 in the mouse, and the transplantation of additional notochord does not disrupt foregut separation in 3D explant culture.


Assuntos
Esôfago/anormalidades , Notocorda/anormalidades , Traqueia/anormalidades , Animais , Esôfago/embriologia , Camundongos , Camundongos Knockout , Notocorda/embriologia , Traqueia/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...