Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114461

RESUMO

Donor-acceptor Stenhouse adducts (DASAs) are a novel class of solvatochromic photoswitches with increasing importance in photochemistry. Known for their reversibility between open triene and closed cyclized states, these push-pull molecules are applicable in a suite of light-controlled applications. Recent works have sought to understand the DASA photoswitching mechanism and reactive state, as DASAs are vulnerable to irreversible "dark switching" in polar protic solvents. Despite the utility of fluorescence spectroscopy for providing information regarding the electronic structure of organic compounds and gaining mechanistic insight, there have been few studies of DASA fluorescence. Herein, we characterize various photophysical properties of two common DASAs based on Meldrum's acid and dimethylbarbituric acid by fluorescence spectroscopy. This approach is applied in tandem with complexation by cyclodextrins and cucurbiturils to reveal the zwitterionic charge separation of these photoswitches in aqueous solution and the protective nature of supramolecular complexation against degradative dark switching. DASA-M, for example, was found to form a weak host-guest inclusion complex with (2-hydroxypropyl)-γ-cyclodextrin, with a binding constant K = 60 M-1, but a very strong inclusion complex with cucurbit[7]uril, with K = 27,000 M-1. This complexation within the host cavity was found to increase the half-life of both DASAs in aqueous solution, indicating the significant and potentially useful stabilization of these DASAs by host encapsulation.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Ciclodextrinas/química , Corantes Fluorescentes/química , Imidazóis/química , Barbitúricos/química , Dioxanos/química , Modelos Moleculares , Processos Fotoquímicos , Espectrometria de Fluorescência
2.
Phys Chem Chem Phys ; 21(33): 18119-18127, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31403633

RESUMO

The ultrafast dynamics of unsubstituted spironaphthopyran (SNP) were investigated using femtosecond transient UV and visible absorption spectroscopy in three different solvents and by semi-classical nuclear dynamics simulations. The primary ring-opening of the pyran unit was found to occur in 300 fs yielding a non-planar intermediate in the first singlet excited state (S1). Subsequent planarisation and relaxation to the product ground state proceed through barrier crossing on the S1 potential energy surface (PES) and take place within 1.1 ps after excitation. Simulations show that more than 90% of the trajectories involving C-O bond elongation lead to the planar, open-ring product, while relaxation back to the S0 of the closed-ring form is accompanied by C-N elongation. All ensuing spectral dynamics are ascribed to vibrational relaxation and thermalisation of the product with a time constant of 13 ps. The latter shows dependency on characteristics of the solvent with solvent relaxation kinetics playing a role.

3.
Langmuir ; 34(37): 10905-10912, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30122042

RESUMO

Surface pressure-area isotherms were recorded under different irradiation conditions for single-component Langmuir films of three photochromic amphiphilic dithienylethenes. Nonirradiated films of these photochromic amphiphiles were mechanically stable. In addition, a shift of the isotherms to larger mean molecular areas was observed for films prepared from UV-light-irradiated dithienylethenes. Unexpectedly, a significant expansion was observed for a film prepared from visible-light-irradiated dithienylethene incorporating large branched alkyl chains. Upon further study, atomic force microscopy and transmission electron microscopy images of Langmuir-Schaefer films revealed that this pronged dialkyl derivative undergoes a photoinduced change in morphology, as circular aggregates coalesce into larger continuous aggregated structures. Nevertheless, its photoisomerization was completely reversible as single-component multilayer thin films upon direct UV or visible light irradiation.

4.
J Phys Chem A ; 120(19): 3042-8, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-26558888

RESUMO

Quantum coherence is proclaimed to promote efficient energy collection by light-harvesting complexes and prototype organic photovoltaics. However, supporting spectroscopic studies are hindered by the problem of distinguishing between the excited state and ground state origin of coherent spectral transients. Coherence amplitude maps, which systematically represent quantum beats observable in two-dimensional (2D) spectroscopy, are currently the prevalent tool for making this distinction. In this article, we present coherence amplitude maps of a molecular dimer, which have become significantly distorted as a result of the finite laser bandwidth used to record the 2D spectra. We argue that under standard spectroscopic conditions similar distortions are to be expected for compounds absorbing over a spectral range similar to, or exceeding, that of the dimer. These include virtually all photovoltaic polymers and certain photosynthetic complexes. With the distortion of coherence amplitude maps, alternative ways to identify quantum coherence are called for. Here, we use numerical simulations that reproduce the essential photophysics of the dimer to unambiguously determine the excited state origin of prominent quantum beats observed in the 2D spectral measurements. This approach is proposed as a dependable method for coherence identification.


Assuntos
Lasers , Teoria Quântica , Carbocianinas/química , Dimerização , Modelos Moleculares , Conformação Molecular
5.
Org Biomol Chem ; 14(1): 296-308, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26507583

RESUMO

Three (bola)amphiphilic spirooxazines have been synthesized and their photochromism has been characterized. The large biphotochromic structure of 2 significantly affects its conformational flexibility and the rate constants for thermal ring closure are particularly dependent on the lipid phase state. Two comprehensive ion permeation studies were performed to examine the effect of spirooxazine inclusion and isomerization on membrane permeability. In all cases, the open-ring isomers of these spirooxazines are more disruptive in bilayer membranes than their closed-ring isomers. Further, the rate of ion permeation and net release are highly dependent on the lipid bilayer phase state and the relative position of the photochromic moiety in the bilayer membrane. Moreover, the difference in potassium ion permeability under UV and visible irradiation is more pronounced than previously reported photoresponsive membrane disruptors with reversible photocontrols.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Oxazinas/química , Compostos de Espiro/química , Tensoativos/química , Íons/química , Estrutura Molecular , Oxazinas/síntese química , Processos Fotoquímicos , Compostos de Espiro/síntese química , Tensoativos/síntese química
6.
Org Biomol Chem ; 13(9): 2652-63, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25582381

RESUMO

The integration of photochromic dithienylethenes (DTEs) with lipid vesicles as photoresponsive membrane disruptors for ion transport applications has been examined. We have synthesized three amphiphilic DTEs 1-3 that incorporate a terminally charged alkyl chain, and contain methyl or phenylethynyl substituents at the reactive carbons. Our photochromic reactivity studies suggest that the inclusion of a single alkyl chain favors the photoactive antiparallel conformation of DTEs, given the significant improvement in the cyclization quantum yield over previous phenylethynyl derivatives. Our ion permeation studies show that the open-ring isomers of these DTEs are more disruptive than the closed-ring isomers in the four lipid vesicle systems studied, regardless of their lamellar phase at room temperature. In addition, a steric effect was clearly observed as DTEs incorporating the comparatively smaller methyl group exhibited lower rates of ion permeation than the bulkier phenylethynyl group. In all cases, UV irradiation led to a reduction in ion permeability. In fact, the methyl analog exhibited a significant reduction in ion permeability in gel-phase lipid vesicles upon UV exposure. Also, the hexyl chain derivatives had a greater effect on membrane permeability than the dodecyl derivative owing to their relative position in the bilayer membrane of lipid vesicles.


Assuntos
Etilenos/química , Lipídeos/química , Tensoativos/química , Etilenos/síntese química , Íons/química , Estrutura Molecular , Processos Fotoquímicos , Tensoativos/síntese química
7.
Nat Chem ; 6(3): 196-201, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24557133

RESUMO

The observation of persistent oscillatory signals in multidimensional spectra of protein-pigment complexes has spurred a debate on the role of coherence-assisted electronic energy transfer as a key operating principle in photosynthesis. Vibronic coupling has recently been proposed as an explanation for the long lifetime of the observed spectral beatings. However, photosynthetic systems are inherently complicated, and tractable studies on simple molecular compounds are needed to fully understand the underlying physics. In this work, we present measurements and calculations on a solvated molecular homodimer with clearly resolvable oscillations in the corresponding two-dimensional spectra. Through analysis of the various contributions to the nonlinear response, we succeed in isolating the signal due to inter-exciton coherence. We find that although calculations predict a prolongation of this coherence due to vibronic coupling, the combination of dynamic disorder and vibrational relaxation leads to a coherence decay on a timescale comparable to the electronic dephasing time.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Análise Espectral/métodos , Dimerização , Elétrons , Transferência de Energia , Modelos Moleculares , Polímeros/química
8.
Water Res ; 52: 122-30, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24463176

RESUMO

Produced water is a complex mixture of oil, water, dissolved solids, and suspended solids. It represents the largest volume of waste associated with the oil and gas industry, and its management is a costly aspect of oil recovery. Therefore, the development of effective treatment technologies for produced water is essential from both ecological and economic standpoints. We have developed a sensitive, fluorescence-based method to demonstrate the decontamination efficiency of a three-component polymeric flocculating system, the microencapsulating flocculating dispersion (MFD) technology. We have shown that the MFD technology can remove 90 ± 2% of the pyrene, a model wastewater contaminant, in a 0.4 ppm aqueous stock solution. The optimal flocculant concentrations used to remove pyrene was determined by fluorescence spectroscopy and zeta potential measurements. Under these conditions, flocculation and settling times were fast (i.e., <1 min). We have also demonstrated rapid removal of crude oil from an oilfield-produced water sample with a remarkable decontamination efficiency of ≥98 ± 1%. Using this fluorescence-based method, we will be better able to formulate the components of this technology and other polymeric flocculants in the treatment of oilfield-produced water, which will benefit wastewater treatment technologies.


Assuntos
Campos de Petróleo e Gás , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Descontaminação , Floculação , Fluorescência , Resíduos Industriais , Petróleo , Pirenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...