Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(8): 087401, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31491230

RESUMO

We present a first-principles method for the calculation of the temperature-dependent relaxation of symmetry-breaking atomic driving forces in photoexcited systems. We calculate the phonon-assisted decay of the photoexcited force on the low-symmetry E_{g} mode following absorption of an ultrafast pulse in Bi, Sb, and As. The force decay lifetimes for Bi and Sb are of the order of 10 fs and in agreement with recent experiments, demonstrating that electron-phonon scattering is the primary mechanism relaxing the symmetry-breaking forces. Calculations for a range of absorbed photon energies suggest that larger amplitude, symmetry-breaking atomic motion may be induced by choosing a pump photon energy which maximizes the product of the initial E_{g} force and its lifetime. The high-symmetry A_{1g} force undergoes a partial decay to a nonzero constant on similar timescales, which has not yet been measured in experiments. The average imaginary part of the electron self-energy over the photoexcited carrier distribution provides a crude indication of the decay rate of symmetry-breaking forces.

2.
ACS Appl Mater Interfaces ; 7(48): 26470-81, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26561963

RESUMO

The growth, structural and optical properties, and energy band alignments of tensile-strained germanium (ε-Ge) epilayers heterogeneously integrated on silicon (Si) were demonstrated for the first time. The tunable ε-Ge thin films were achieved using a composite linearly graded InxGa1-xAs/GaAs buffer architecture grown via solid source molecular beam epitaxy. High-resolution X-ray diffraction and micro-Raman spectroscopic analysis confirmed a pseudomorphic ε-Ge epitaxy whereby the degree of strain varied as a function of the In(x)Ga(1-x)As buffer indium alloy composition. Sharp heterointerfaces between each ε-Ge epilayer and the respective In(x)Ga(1-x)As strain template were confirmed by detailed strain analysis using cross-sectional transmission electron microscopy. Low-temperature microphotoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 and 0.65 eV demonstrated for the 0.82 ± 0.06% and 1.11 ± 0.03% strained Ge on Si, respectively. Type-I band alignments and valence band offsets of 0.27 and 0.29 eV for the ε-Ge/In(0.11)Ga(0.89)As (0.82%) and ε-Ge/In(0.17)Ga(0.83)As (1.11%) heterointerfaces, respectively, show promise for ε-Ge carrier confinement in future nanoscale optoelectronic devices. Therefore, the successful heterogeneous integration of tunable tensile-strained Ge on Si paves the way for the design and implementation of novel Ge-based photonic devices on the Si technology platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA