Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 27(4): 1064-1081, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28295816

RESUMO

Contemporary forest management offers a trade-off between the potential positive effects of habitat heterogeneity on biodiversity, and the potential harm to mature forest communities caused by habitat loss and perforation of the forest canopy. While the response of taxonomic diversity to forest management has received a great deal of scrutiny, the response of functional diversity is largely unexplored. However, functional diversity may represent a more direct link between biodiversity and ecosystem function. To examine how forest management affects diversity at multiple spatial scales, we analyzed a long-term data set that captured changes in taxonomic and functional diversity of moths (Lepidoptera), longhorned beetles (Coleoptera: Cerambycidae), and breeding birds in response to contemporary silvicultural systems in oak-hickory hardwood forests. We used these data sets to address the following questions: how do even- and uneven-aged silvicultural systems affect taxonomic and functional diversity at the scale of managed landscapes compared to the individual harvested and unharvested forest patches that comprise the landscapes, and how do these silvicultural systems affect the functional similarity of assemblages at the scale of managed landscapes and patches? Due to increased heterogeneity within landscapes, we expected even-aged silviculture to increase and uneven-aged silviculture to decrease functional diversity at the landscape level regardless of impacts at the patch level. Functional diversity responses were taxon-specific with respect to the direction of change and time since harvest. Responses were also consistent across patch and landscape levels within each taxon. Moth assemblage species richness, functional richness, and functional divergence were negatively affected by harvesting, with stronger effects resulting from uneven-aged than even-aged management. Longhorned beetle assemblages exhibited a peak in species richness two years after harvesting, while functional diversity metrics did not differ between harvested and unharvested patches and managed landscapes. The species and functional richness of breeding bird assemblages increased in response to harvesting with more persistent effects in uneven- than in even-aged managed landscapes. For moth and bird assemblages, species turnover was driven by species with more extreme trait combinations. Our study highlights the variability of multi-taxon functional diversity in response to forest management across multiple spatial scales.


Assuntos
Biodiversidade , Aves/fisiologia , Besouros/fisiologia , Agricultura Florestal/métodos , Florestas , Mariposas/fisiologia , Animais , Carya/crescimento & desenvolvimento , Indiana , Dinâmica Populacional , Quercus/crescimento & desenvolvimento , Fatores de Tempo
2.
Ecology ; 94(6): 1317-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23923495

RESUMO

Spatial heterogeneity of soil resources, particularly nitrogen availability, affects herbaceous-layer cover and diversity in temperate forest ecosystems. Current hypotheses predict that ungulate herbivores influence nitrogen availability at the stand scale, but how ungulates affect nitrogen availability at finer spatial scales that are relevant to the herb layer is less understood. We tested the hypothesis that ungulate exclusion reduces the spatial complexity of nitrogen availability at neighborhood scales (1-26 m) apart from mean stand scale effects. This outcome was expected due to a lack of ungulate nitrogenous waste deposition within exclosures and seasonally variable ungulate habitat use. To test this hypothesis we examined spatial patterning of ammonium and nitrate availability, herb-layer cover and diversity, and under-canopy solar radiation using geostatistical models. Our study sites included six stands of eastern hemlock (Tsuga canadensis) forest: three where white-tailed deer (Odocoileus virginianus) were excluded and three that were accessible to deer. Where deer were present, patch sizes of ammonium availability, cover, and diversity were smaller compared to deer exclosures, whereas mean site-level effects were not significant. Within deer exclosures cover and solar radiation were more similar in patch size than were cover and nitrogen availability. Our results suggest that browsing ungulates affect spatial patterns of herb-layer cover and diversity through the excretion of nitrogenous wastes in small, discrete patches. Ungulate-excreted nitrogen deposition and herbivory were concentrated in the dormant season, allowing herb-layer plants a greater opportunity to benefit from nitrogen additions. Therefore, the impact of ungulates on nitrogen cycling in forest ecosystems varies with spatial scale and the seasonal timing of ungulate impacts. In this way, ungulates may function as a seasonally dependent link between fine-scale and landscape-level ecological processes.


Assuntos
Cervos/fisiologia , Ecossistema , Nitrogênio/metabolismo , Estações do Ano , Animais , Demografia , Ciclo do Nitrogênio
3.
PLoS One ; 7(8): e43867, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928044

RESUMO

Opportunities to directly study infrequent forest disturbance events often lead to valuable information about vegetation dynamics. In mesic temperate forests of North America, stand-replacing crown fire occurs infrequently, with a return interval of 2000-3000 years. Rare chance events, however, may have profound impacts on the developmental trajectories of forest ecosystems. For example, it has been postulated that stand-replacing fire may have been an important factor in the establishment of eastern hemlock (Tsuga canadensis) stands in the northern Great Lakes region. Nevertheless, experimental evidence linking hemlock regeneration to non-anthropogenic fire is limited. To clarify this potential relationship, we monitored vegetation dynamics following a rare lightning-origin crown fire in a Wisconsin hemlock-hardwood forest. We also studied vegetation in bulldozer-created fire breaks and adjacent undisturbed forest. Our results indicate that hemlock establishment was rare in the burned area but moderately common in the scarified bulldozer lines compared to the reference area. Early-successional, non-arboreal species including Rubus spp., Vaccinium angustifolium, sedges (Carex spp.), grasses, Epilobium ciliatum, and Pteridium aquilinium were the most abundant post-fire species. Collectively, our results suggest that competing vegetation and moisture stress resulting from drought may reduce the efficacy of scarification treatments as well as the usefulness of fire for preparing a suitable seedbed for hemlock. The increasing prevalence of growing-season drought suggests that silvicultural strategies based on historic disturbance regimes may need to be reevaluated for mesic species.


Assuntos
Incêndios , Árvores/crescimento & desenvolvimento , Tsuga/crescimento & desenvolvimento , Secas , Plântula/crescimento & desenvolvimento , Solo , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA