Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Landsc Ecol ; 37(3): 795-809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34720409

RESUMO

CONTEXT: Habitat specialists residing in human-modified landscapes are likely to be more vulnerable to disturbance because of a functional reliance on very particular habitat features. However, there have been few studies designed to specifically address that issue. OBJECTIVES: This study aimed to explore how the red panda, an iconic endangered habitat specialist, behaves when faced with disturbances and habitat fragmentation. In particular, we attempted to examine the effect of anthropogenic disturbances and fragmentation on home-range size, activity patterns, and recursion. METHODS: Using GPS telemetry we monitored 10 red pandas and documented disturbances using camera trapping for one year in eastern Nepal. We performed spatial analysis, analysed activity patterns and evaluated the effect of habitat fragmentation and disturbances on home-range size and residence time using Linear Mixed Models. RESULTS: Home-range size increased in areas with low availability of forest cover whilst home ranges were smaller in areas with a high road density. Red pandas spent more time in large habitat patches away from roads and cattle stations. Crossing rates suggested that roads acted as a barrier for movement across their habitat. Red pandas also partitioned their activity to minimize interactions with disturbances. CONCLUSIONS: Red pandas seem to make a trade-off to co-exist in human-dominated landscapes which may have adverse long-term effects on their survival. This indicates that current patterns of habitat fragmentation and forest exploitation may be adversely affecting red panda conservation efforts and that landscape-scale effects should be considered when planning conservation actions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10980-021-01357-w.

2.
Mov Ecol ; 9(1): 62, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906253

RESUMO

BACKGROUND: Habitat specialists living in human-dominated landscapes are likely to be affected by habitat fragmentation and human disturbances more than generalists. But there is a paucity of information on their response to such factors. We examined the effect of these factors on movement patterns of red pandas Ailurus fulgens, a habitat and diet specialist that inhabits the eastern Himalaya. METHODS: We equipped 10 red pandas (six females, four males) with GPS collars and monitored them from September 2019 to March 2020 in Ilam, eastern Nepal. We collected habitat and disturbance data over four seasons. We considered geophysical covariates, anthropogenic factors and habitat fragmentation metrics, and employed linear -mixed models and logistic regression to evaluate the effect of those variables on movement patterns. RESULTS: The median daily distance travelled by red pandas was 756 m. Males travelled nearly 1.5 times further than females (605 m). Males and sub-adults travelled more in the mating season while females showed no seasonal variation for their daily distance coverage. Red pandas were relatively more active during dawn and morning than the rest of the day, and they exhibited seasonal variation in distance coverage on the diel cycle. Both males and females appeared to be more active in the cub-rearing season, yet males were more active in the dawn in the birthing season. Two sub-adult females dispersed an average of 21 km starting their dispersal with the onset of the new moon following the winter solstice. The single subadult male did not disperse. Red pandas avoided roads, small-habitat patches and large unsuitable areas between habitat patches. Where connected habitat with high forest cover was scarce the animals moved more directly than when habitat was abundant. CONCLUSIONS: Our study indicates that this habitat specialist is vulnerable to human disturbances and habitat fragmentation. Habitat restoration through improving functional connectivity may be necessary to secure the long-term conservation of specialist species in a human-dominated landscape. Regulation of human activities should go in parallel to minimize disturbances during biologically crucial life phases. We recommend habitat zonation to limit human activities and avoid disturbances, especially livestock herding and road construction in core areas.

3.
Animals (Basel) ; 11(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805041

RESUMO

It is sometimes essential to have an animal in the hand to study some of their ecological and biological characteristics. However, capturing a solitary, cryptic, elusive arboreal species such as the red panda in the wild is challenging. We developed and successfully tested a protocol for tracking, trapping, immobilization, and handling of red pandas in the wild in eastern Nepal. We established a red panda sighting rate of 0.89 panda/day with a capture success rate of 0.6. We trapped and collared one animal in 3.7 days. On average, we took nearly 136 (range 50-317) min to capture an animal after spotting it. Further processing was completed in 38.5 (21-70) min. Before capture, we found it difficult to recognize the sex of the red panda and to differentiate sub-adults above six months from adults. However, body weight, body length, tail length, shoulder height, and chest girth can be used for diagnosis, as these attributes are smaller in sub-adults. Our method is a welfare-friendly way of trapping and handling wild red pandas. We report new morphometric data that could serve as a guide for field identification.

4.
J Pept Sci ; 12(6): 383-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16342331

RESUMO

The recently isolated broad-spectrum antiparasitic apicidin (1) is one of the few naturally occurring cyclic tetrapeptides (CTP). Depending on the solvent, the backbone of 1 exhibits two gamma-turns (in CH(2)Cl(2)) or a beta-turn (in DMSO), differing solely in the rotation of the plane of one of the amide bonds. In the X-ray crystal structure, the peptidic C==Os and NHs are on opposite sides of the backbone plane, giving rise to infinite stacks of cyclotetrapeptides connected by three intermolecular hydrogen bonds between the backbones. Conformational searches (Amber force field) on a truncated model system of 1 confirm all three backbone conformations to be low-energy states. The previously synthesized analogs of 1 containing a reduced amide bond exhibit the same backbone conformation as 1 in DMSO, which is confirmed further by the X-ray crystal structure of a model system of the desoxy analogs of 1. This similarity helps in explaining why the desoxy analogs retain some of the antiprotozoal activities of apicidin. The backbone-reduction approach designed to facilitate the cyclization step of the acyclic precursors of the CTPs seems to retain the conformational preferences of the parent peptide backbone.


Assuntos
Oligopeptídeos/química , Peptídeos Cíclicos/química , Simulação por Computador , Cristalografia por Raios X/métodos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/síntese química , Peptídeos Cíclicos/síntese química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...