Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Microorganisms ; 12(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38543520

RESUMO

Considering the increasing interest in understanding the biotic component of methane removal from our atmosphere, it becomes essential to study the physiological characteristics and genomic potential of methanotroph isolates, especially their traits allowing them to adapt to elevated growth temperatures. The genetic signatures of Methylocaldum species have been detected in many terrestrial and aquatic ecosystems. A small set of representatives of this genus has been isolated and maintained in culture. The genus is commonly described as moderately thermophilic, with the growth optimum reaching 50 °C for some strains. Here, we present a comparative analysis of genomes of three Methylocaldum strains-two terrestrial M. szegediense strains (O-12 and Norfolk) and one marine strain, Methylocaldum marinum (S8). The examination of the core genome inventory of this genus uncovers significant redundancy in primary metabolic pathways, including the machinery for methane oxidation (numerous copies of pmo genes) and methanol oxidation (duplications of mxaF, xoxF1-5 genes), three pathways for one-carbon (C1) assimilation, and two methods of carbon storage (glycogen and polyhydroxyalkanoates). We also investigate the genetics of melanin production pathways as a key feature of the genus.

2.
Microbiol Resour Announc ; 13(2): e0067523, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38236040

RESUMO

Here we report the complete genome sequence of two moderately thermophilic methanotrophs isolated from a landfill methane biofilter, Methylococcus capsulatus (Norfolk) and Methylocaldum szegediense (Norfolk).

3.
Environ Microbiol Rep ; 15(6): 809-819, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935632

RESUMO

Co-oxidation of a range of alkenes, dienes, and aromatic compounds by whole cells of the isoprene-degrading bacterium Rhodococcus sp. AD45 expressing isoprene monooxygenase was investigated, revealing a relatively broad substrate specificity for this soluble diiron centre monooxygenase. A range of 1-alkynes (C2 -C8 ) were tested as potential inhibitors. Acetylene, a potent inhibitor of the related enzyme soluble methane monooxygenase, had little inhibitory effect, whereas 1-octyne was a potent inhibitor of isoprene monooxygenase, indicating that 1-octyne could potentially be used as a specific inhibitor to differentiate between isoprene consumption by bona fide isoprene degraders and co-oxidation of isoprene by other oxygenase-containing bacteria, such as methanotrophs, in environmental samples. The isoprene oxidation kinetics of a variety of monooxygenase-expressing bacteria were also investigated, revealing that alkene monooxygenase from Xanthobacter and soluble methane monooxygenases from Methylococcus and Methylocella, but not particulate methane monooxygenases from Methylococcus or Methylomicrobium, could co-oxidise isoprene at appreciable rates. Interestingly the ammonia monooxygenase from the nitrifier Nitrosomonas europaea could also co-oxidise isoprene at relatively high rates, suggesting that co-oxidation of isoprene by additional groups of bacteria, under the right conditions, might occur in the environment.


Assuntos
Oxigenases de Função Mista , Oxigenases , Oxigenases de Função Mista/genética , Oxigenases/genética , Oxigenases/química , Alcinos , Bactérias/genética , Metano
4.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37698885

RESUMO

Ammonia oxidizers are key players in the global nitrogen cycle and are responsible for the oxidation of ammonia to nitrite, which is further oxidized to nitrate by other microorganisms. Their activity can lead to adverse effects on some human-impacted environments, including water pollution through leaching of nitrate and emissions of the greenhouse gas nitrous oxide (N2O). Ammonia monooxygenase (AMO) is the key enzyme in microbial ammonia oxidation and shared by all groups of aerobic ammonia oxidizers. The AMO has not been purified in an active form, and much of what is known about its potential structure and function comes from studies on its interactions with inhibitors. The archaeal AMO is less well studied as ammonia oxidizing archaea were discovered much more recently than their bacterial counterparts. The inhibition of ammonia oxidation by aliphatic alcohols (C1-C8) using the model terrestrial ammonia oxidizing archaeon 'Candidatus Nitrosocosmicus franklandus' C13 and the ammonia oxidizing bacterium Nitrosomonas europaea was examined in order to expand knowledge about the range of inhibitors of ammonia oxidizers. Methanol was the most potent specific inhibitor of the AMO in both ammonia oxidizers, with half-maximal inhibitory concentrations (IC50) of 0.19 and 0.31 mM, respectively. The inhibition was AMO-specific in 'Ca. N. franklandus' C13 in the presence of C1-C2 alcohols, and in N. europaea in the presence of C1-C3 alcohols. Higher chain-length alcohols caused non-specific inhibition and also inhibited hydroxylamine oxidation. Ethanol was tolerated by 'Ca. N. franklandus' C13 at a higher threshold concentration than other chain-length alcohols, with 80 mM ethanol being required for complete inhibition of ammonia oxidation.


Assuntos
Amônia , Archaea , Humanos , Archaea/fisiologia , Nitratos , Bactérias , Oxirredução , Etanol , Nitrificação
5.
Appl Environ Microbiol ; 89(3): e0212222, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36840579

RESUMO

Isoprene monooxygenase (IsoMO, encoded by isoABCDEF) initiates the oxidation of the climate-active gas isoprene, with the genes isoGHIJ and aldH nearly always found adjacent to isoABCDEF in extant and metagenome-derived isoprene degraders. The roles of isoGHIJ and aldH are uncertain, although each is essential to isoprene degradation. We report here the characterization of these proteins from two model isoprene degraders, Rhodococcus sp. strain AD45 and Variovorax sp. strain WS11. The genes isoHIJ and aldH from Variovorax and aldH from Rhodococcus were expressed individually in Escherichia coli as maltose binding protein fusions to overcome issues of insolubility. The activity of two glutathione S-transferases from Variovorax, IsoI and IsoJ was assessed with model substrates, and the conversion of epoxyisoprene to the intermediate 1-hydroxy-2-glutathionyl-2-methyl-3-butene (HGMB) was demonstrated. The next step of the isoprene metabolic pathway of Variovorax is catalyzed by the dehydrogenase IsoH, resulting in the conversion of HGMB to 2-glutathionyl-2-methyl-3-butenoic acid (GMBA). The aldehyde dehydrogenases (AldH) from Variovorax and Rhodococcus were examined with a variety of aldehydes, with both exhibiting maximum activity with butanal. AldH significantly increased the rate of production of NADH when added to the IsoH-catalyzed conversion of HGMB to GMBA (via GMB), suggesting a synergistic role for AldH in the isoprene metabolic pathway. An in silico analysis of IsoG revealed that this protein, which is essential for isoprene metabolism in Variovorax, is an enzyme of the formyl CoA-transferase family and is predicted to catalyze the formation of a GMBA-CoA thioester as an intermediate in the isoprene oxidation pathway. IMPORTANCE Isoprene is a climate-active gas, largely produced by trees, which is released from the biosphere in amounts equivalent to those of methane and all other volatile organic compounds combined. Bacteria found in many environments, including soils and on the surface of leaves of isoprene-producing trees, can grow on isoprene and thus may represent a significant biological sink for this globally significant volatile compound and remove isoprene before it escapes to the atmosphere, thus reducing its potency as a climate-active gas. The initial oxidation of isoprene by bacteria is mediated by isoprene monooxygenase encoded by the genes isoABCDEF. In isoprene-degrading bacteria, a second gene cluster, isoGHIJ, is also present, although the exact role in isoprene degradation by the proteins encoded by these genes is uncertain. This investigation sheds new light on the roles of these proteins in the isoprene oxidation pathway in two model isoprene-degrading bacteria of the genera Rhodococcus and Variovorax.


Assuntos
Hemiterpenos , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Oxirredução , Hemiterpenos/metabolismo , Bactérias/metabolismo , Aldeído Desidrogenase/metabolismo , Redes e Vias Metabólicas/genética
6.
Environ Microbiol ; 25(5): 948-961, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36598494

RESUMO

The ammonia monooxygenase (AMO) is a key enzyme in ammonia-oxidizing archaea, which are abundant and ubiquitous in soil environments. The AMO belongs to the copper-containing membrane monooxygenase (CuMMO) enzyme superfamily, which also contains particulate methane monooxygenase (pMMO). Enzymes in the CuMMO superfamily are promiscuous, which results in co-oxidation of alternative substrates. The phylogenetic and structural similarity between the pMMO and the archaeal AMO is well-established, but there is surprisingly little information on the influence of methane and methanol on the archaeal AMO and terrestrial nitrification. The aim of this study was to examine the effects of methane and methanol on the soil ammonia-oxidizing archaeon 'Candidatus Nitrosocosmicus franklandus C13'. We demonstrate that both methane and methanol are competitive inhibitors of the archaeal AMO. The inhibition constants (Ki ) for methane and methanol were 2.2 and 20 µM, respectively, concentrations which are environmentally relevant and orders of magnitude lower than those previously reported for ammonia-oxidizing bacteria. Furthermore, we demonstrate that a specific suite of proteins is upregulated and downregulated in 'Ca. Nitrosocosmicus franklandus C13' in the presence of methane or methanol, which provides a foundation for future studies into metabolism of one-carbon (C1) compounds in ammonia-oxidizing archaea.


Assuntos
Archaea , Metanol , Archaea/metabolismo , Metanol/metabolismo , Amônia/metabolismo , Metano/metabolismo , Filogenia , Oxirredução , Solo/química
7.
Methods Mol Biol ; 2555: 261-282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36306091

RESUMO

Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13C, 18O, or 15N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labelled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labelled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labelling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, or even metagenomes and metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labelled microorganisms. Analysis of labelled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allowed using labelled substrates at environmentally relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies, leading to further breakthroughs in our understanding of novel microbial populations and elucidation of the metabolic function of complex microbial communities. In this chapter, we provide protocols for obtaining labelled DNA, RNA, and proteins that can be used for downstream omics-based analyses.


Assuntos
DNA , Proteínas , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/química , Isótopos de Carbono/química , Marcação por Isótopo/métodos , DNA/química , Proteínas/química , Biomarcadores , RNA Mensageiro
8.
BMC Vet Res ; 18(1): 341, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085033

RESUMO

BACKGROUND: The Bristol Rabbit Pain Scale (BRPS) was developed using a combination of methods, focus groups and behavioural observation, that led to a composite pain scale of six categories (Demeanour, Locomotion, Posture, Ears, Eyes and Grooming) with four intensities of pain (0, 1, 2, and 3), and a total score of 0-18. The aim of this study was to assess the clinical utility, validity and reliability of the BRPS. MATERIALS AND METHODS: The clinical utility of the BRPS was tested using a questionnaire composed of ten questions each on a five-point Likert scale ranging from one (strongly disagree) to five (strongly agree). The respondents, (veterinary surgeons and veterinary nurses), were asked to assess up to four rabbits in acute pain, using the novel pain. They then completed the questionnaire which asked whether the BRPS was easy and quick to use and whether it provided information that was clinically useful. The questionnaire was tested for internal reliability using the Cronbach's alpha reliability coefficient. The construct validity (how well the tool measures the concept it was designed for) was measured by observers blindly rating 20 rabbits pre- and post-surgery whilst the criterion validity (the degree to which the tool correlates with a gold standard) was assessed by correlating BRPS scores with scores using a numerical rating scale (NRS) with a total score of 0-10. Inter-rater reliability was tested by quantifying the agreement in the pain scores given by nine participants when assessing the same 40 video clips. The intra-rater reliability was measured by testing how consistent the participants were when rating the same clips one month later. RESULTS: The median score of the ten questions of the clinical utility test was 4 (range 2-5). The Cronbach's alpha reliability coefficient of the clinical utility test was good (α = 0.811) demonstrating good internal consistency. The median (range) pain score of the BRPS and the NRS were 3 (0-14) and 0 (0-8) before surgery and 12 (1-18) and 7 (0-10) after surgery respectively. The BRPS demonstrated high construct validity (Z = -11.452; p < 0.001) and there was a strong correlation between the BRPS and the NRS (Rho = 0.851; p < 0.001) indicating high criterion validity. The inter-rater and the intra-rater agreements were α = 0.863 and α = 0.861 respectively, which is considered good. CONCLUSIONS: This study showed that the BRPS is a suitable tool for quantifying pain in rabbits in a clinically useful, valid and reliable way.


Assuntos
Técnicos em Manejo de Animais , Lagomorpha , Animais , Grupos Focais , Humanos , Dor/diagnóstico , Dor/veterinária , Coelhos , Reprodutibilidade dos Testes
9.
Environ Microbiol ; 24(11): 5151-5164, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920040

RESUMO

Bacteria that inhabit soils and the leaves of trees partially mitigate the release of the abundant volatile organic compound, isoprene (2-methyl-1,3-butadiene). While the initial steps of isoprene metabolism were identified in Rhodococcus sp. AD45 two decades ago, the isoprene metabolic pathway still remains largely undefined. Limited understanding of the functions of isoG, isoJ and aldH and uncertainty in the route of isoprene-derived carbon into central metabolism have hindered our understanding of isoprene metabolism. These previously uncharacterised iso genes are essential in Variovorax sp. WS11, determined by targeted mutagenesis. Using combined 'omics-based approaches, we propose the complete isoprene metabolic pathway. Isoprene is converted to propionyl-CoA, which is assimilated by the chromosomally encoded methylmalonyl-CoA pathway, requiring biotin and vitamin B12, with the plasmid-encoded methylcitrate pathway potentially providing robustness against limitations in these vitamins. Key components of this pathway were induced by both isoprene and its initial oxidation product, epoxyisoprene, the principal inducer of isoprene metabolism in both Variovorax sp. WS11 and Rhodococcus sp. AD45. Analysis of the genomes of distinct isoprene-degrading bacteria indicated that all of the genetic components of the methylcitrate and methylmalonyl-CoA pathways are not always present in isoprene degraders, although incorporation of isoprene-derived carbon via propionyl-CoA and acetyl-CoA is universally indicated.


Assuntos
Comamonadaceae , Rhodococcus , Hemiterpenos/metabolismo , Butadienos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Comamonadaceae/genética , Comamonadaceae/metabolismo , Carbono/metabolismo
10.
Microbiome ; 10(1): 110, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35883169

RESUMO

BACKGROUND: Ubiquitous and diverse marine microorganisms utilise the abundant organosulfur molecule dimethylsulfoniopropionate (DMSP), the main precursor of the climate-active gas dimethylsulfide (DMS), as a source of carbon, sulfur and/or signalling molecules. However, it is currently difficult to discern which microbes actively catabolise DMSP in the environment, why they do so and the pathways used. RESULTS: Here, a novel DNA-stable isotope probing (SIP) approach, where only the propionate and not the DMS moiety of DMSP was 13C-labelled, was strategically applied to identify key microorganisms actively using DMSP and also likely DMS as a carbon source, and their catabolic enzymes, in North Sea water. Metagenomic analysis of natural seawater suggested that Rhodobacterales (Roseobacter group) and SAR11 bacteria were the major microorganisms degrading DMSP via demethylation and, to a lesser extent, DddP-driven DMSP lysis pathways. However, neither Rhodobacterales and SAR11 bacteria nor their DMSP catabolic genes were prominently labelled in DNA-SIP experiments, suggesting they use DMSP as a sulfur source and/or in signalling pathways, and not primarily for carbon requirements. Instead, DNA-SIP identified gammaproteobacterial Oceanospirillales, e.g. Amphritea, and their DMSP lyase DddD as the dominant microorganisms/enzymes using DMSP as a carbon source. Supporting this, most gammaproteobacterial (with DddD) but few alphaproteobacterial seawater isolates grew on DMSP as sole carbon source and produced DMS. Furthermore, our DNA-SIP strategy also identified Methylophaga and other Piscirickettsiaceae as key bacteria likely using the DMS, generated from DMSP lysis, as a carbon source. CONCLUSIONS: This is the first study to use DNA-SIP with 13C-labelled DMSP and, in a novel way, it identifies the dominant microbes utilising DMSP and DMS as carbon sources. It highlights that whilst metagenomic analyses of marine environments can predict microorganisms/genes that degrade DMSP and DMS based on their abundance, it cannot disentangle those using these important organosulfur compounds for their carbon requirements. Note, the most abundant DMSP degraders, e.g. Rhodobacterales with DmdA, are not always the key microorganisms using DMSP for carbon and releasing DMS, which in this coastal system were Oceanospirillales containing DddD. Video abstract.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Alphaproteobacteria/genética , Bactérias , Carbono/metabolismo , Liases de Carbono-Enxofre , DNA , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Água do Mar/microbiologia , Compostos de Sulfônio , Enxofre/metabolismo
11.
Vet J ; 287: 105876, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901924

RESUMO

Opioids are a key component of multimodal analgesia. Methadone is licensed in Europe for IV, IM and SC use in dogs despite there being no published studies assessing the analgesic efficacy of SC administration. Our intention was to compare the analgesic effect of IV or SC methadone. Fifteen dogs presenting for stifle surgery were administered 0.4 mg/kg methadone IV followed by a randomised 0.0.4 mg/kg methadone IV or SC dose 3 h later. All dogs received ultrasound-guided sciatic and saphenous nerve blocks with bupivacaine prior to surgery. This protocol resulted in opioid adverse effects (hypersalivation, vomiting and/or regurgitation) in 5/15 dogs (33%). Thus, in consultation with the ethical review committee, an otherwise identical protocol using a revised 0.2 mg/kg methadone dose was implemented. In the next three dogs studied, similar opioid adverse effects were found in all three dogs and the study was terminated. This paper highlights the potential for post operative nausea and vomiting (PONV), which may have been induced by methadone when used in combination with efficacious locoregional anaesthesia.


Assuntos
Analgesia , Doenças do Cão , Analgesia/veterinária , Analgésicos Opioides , Animais , Bupivacaína/uso terapêutico , Doenças do Cão/tratamento farmacológico , Cães , Metadona/farmacologia , Metadona/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/veterinária , Náusea e Vômito Pós-Operatórios/tratamento farmacológico , Náusea e Vômito Pós-Operatórios/prevenção & controle , Náusea e Vômito Pós-Operatórios/veterinária
12.
Biology (Basel) ; 11(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35453719

RESUMO

Isoprene is a climate-active biogenic volatile organic compound (BVOC), emitted into the atmosphere in abundance, mainly from terrestrial plants. Soil is an important sink for isoprene due to its consumption by microbes. In this study, we report the ability of a soil bacterium to degrade isoprene. Strain 13f was isolated from soil beneath wild Himalayan cherry trees in a tropical restored forest. Based on phylogenomic analysis and an Average Nucleotide Identity score of >95%, it most probably belongs to the species Alcaligenes faecalis. Isoprene degradation by Alcaligenes sp. strain 13f was measured by using gas chromatography. When isoprene was supplied as the sole carbon and energy source at the concentration of 7.2 × 105 ppbv and 7.2 × 106 ppbv, 32.6% and 19.6% of isoprene was consumed after 18 days, respectively. Genome analysis of Alcaligenes sp. strain 13f revealed that the genes that are typically found as part of the isoprene monooxygenase gene cluster in other isoprene-degrading bacteria were absent. This discovery suggests that there may be alternative pathways for isoprene metabolism.

13.
Appl Environ Microbiol ; 88(8): e0247021, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35384704

RESUMO

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) perform key steps in the global nitrogen cycle, the oxidation of ammonia to nitrite. While the ammonia oxidation pathway is well characterized in AOB, many knowledge gaps remain about the metabolism of AOA. Hydroxylamine is an intermediate in both AOB and AOA, but homologues of hydroxylamine dehydrogenase (HAO), catalyzing bacterial hydroxylamine oxidation, are absent in AOA. Hydrazine is a substrate for bacterial HAO, while phenylhydrazine is a suicide inhibitor of HAO. Here, we examine the effect of hydrazines in AOA to gain insights into the archaeal ammonia oxidation pathway. We show that hydrazine is both a substrate and an inhibitor for AOA and that phenylhydrazine irreversibly inhibits archaeal hydroxylamine oxidation. Both hydrazine and phenylhydrazine interfered with ammonia and hydroxylamine oxidation in AOA. Furthermore, the AOA "Candidatus Nitrosocosmicus franklandus" C13 oxidized hydrazine into dinitrogen (N2), coupling this reaction to ATP production and O2 uptake. This study expands the known substrates of AOA and suggests that despite differences in enzymology, the ammonia oxidation pathways of AOB and AOA are functionally surprisingly similar. These results demonstrate that hydrazines are valuable tools for studying the archaeal ammonia oxidation pathway. IMPORTANCE Ammonia-oxidizing archaea (AOA) are among the most numerous living organisms on Earth, and they play a pivotal role in the global biogeochemical nitrogen cycle. Despite this, little is known about the physiology and metabolism of AOA. We demonstrate in this study that hydrazines are inhibitors of AOA. Furthermore, we demonstrate that the model soil AOA "Ca. Nitrosocosmicus franklandus" C13 oxidizes hydrazine to dinitrogen gas, and this reaction yields ATP. This provides an important advance in our understanding of the metabolism of AOA and expands the short list of energy-yielding compounds that AOA can use. This study also provides evidence that hydrazines can be useful tools for studying the metabolism of AOA, as they have been for the bacterial ammonia oxidizers.


Assuntos
Amônia , Archaea , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Humanos , Hidrazinas/metabolismo , Hidrazinas/farmacologia , Hidroxilaminas/metabolismo , Nitrificação , Fenil-Hidrazinas/metabolismo , Microbiologia do Solo
14.
FEMS Microbiol Lett ; 369(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35323924

RESUMO

Ammonia-oxidising archaea (AOA) are environmentally important microorganisms involved in the biogeochemical cycling of nitrogen. Routine cultivation of AOA is exclusively performed in liquid cultures and reports on their growth on solid medium are scarce. The ability to grow AOA on solid medium would be beneficial for not only the purification of enrichment cultures but also for developing genetic tools. The aim of this study was to develop a reliable method for growing individual colonies from AOA cultures on solid medium. Three phylogenetically distinct AOA strains were tested: 'Candidatus Nitrosocosmicus franklandus C13', Nitrososphaera viennensis EN76 and 'Candidatus Nitrosotalea sinensis Nd2'. Of the gelling agents tested, agar and Bacto-agar severely inhibited growth of all three strains. In contrast, both 'Ca. N. franklandus C13' and N. viennensis EN76 tolerated Phytagel™ while the acidophilic 'Ca. N. sinensis Nd2' was completely inhibited. Based on these observations, we developed a Liquid-Solid (LS) method that involves immobilising cells in Phytagel™ and overlaying with liquid medium. This approach resulted in the development of visible distinct colonies from 'Ca. N. franklandus C13' and N. viennensis EN76 cultures and lays the groundwork for the genetic manipulation of this group of microorganisms.


Assuntos
Amônia , Archaea , Ágar , Archaea/genética , Meios de Cultura , Nitrificação , Oxirredução , Filogenia , Microbiologia do Solo
15.
ISME J ; 16(7): 1705-1716, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319019

RESUMO

Natural gas seeps release significant amounts of methane and other gases including ethane and propane contributing to global climate change. In this study, bacterial actively consuming short-chain alkanes were identified by cultivation, whole-genome sequencing, and stable-isotope probing (SIP)-metagenomics using 13C-propane and 13C-ethane from two different natural gas seeps, Pipe Creek and Andreiasu Everlasting Fire. Nearly 100 metagenome-assembled genomes (MAGs) (completeness 70-99%) were recovered from both sites. Among these, 16 MAGs had genes encoding the soluble di-iron monooxygenase (SDIMO). The MAGs were affiliated to Actinobacteria (two MAGs), Alphaproteobacteria (ten MAGs), and Gammaproteobacteria (four MAGs). Additionally, three gaseous-alkane degraders were isolated in pure culture, all of which could grow on ethane, propane, and butane and possessed SDIMO-related genes. Two Rhodoblastus strains (PC2 and PC3) were from Pipe Creek and a Mycolicibacterium strain (ANDR5) from Andreiasu. Strains PC2 and PC3 encoded putative butane monooxygenases (MOs) and strain ANDR5 contained a propane MO. Mycolicibacterium strain ANDR5 and MAG19a, highly abundant in incubations with 13C-ethane, share an amino acid identity (AAI) of 99.3%. We show using a combination of enrichment and isolation, and cultivation-independent techniques, that these natural gas seeps contain a diverse community of active bacteria oxidising gaseous-alkanes, which play an important role in biogeochemical cycling of natural gas.


Assuntos
Alcanos , Gás Natural , Alcanos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Butanos/metabolismo , Etano/metabolismo , Gases/metabolismo , Oxigenases de Função Mista/genética , Filogenia , Propano/metabolismo
16.
Appl Environ Microbiol ; 88(7): e0002922, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285709

RESUMO

Isoprene (2-methyl-1,3-butadiene) is a climate-active gas released to the atmosphere in large quantities, comparable to methane in magnitude. Several bacteria have been isolated which can grow on isoprene as a sole carbon and energy source, but very little information is available about the degradation of isoprene by these bacteria at the biochemical level. Isoprene utilization is dependent on a multistep pathway, with the first step being the oxidation of isoprene to epoxy-isoprene. This is catalyzed by a four-component soluble diiron monooxygenase, isoprene monooxygenase (IsoMO). IsoMO is a six-protein complex comprising an oxygenase (IsoABE), containing the di-iron active site, a Rieske-type ferredoxin (IsoC), a NADH reductase (IsoF), and a coupling/effector protein (IsoD), homologous to the soluble methane monooxygenase and alkene/aromatic monooxygenases. Here, we describe the purification of the IsoMO components from Rhodococcus sp. AD45 and reconstitution of isoprene-oxidation activity in vitro. Some IsoMO components were expressed and purified from the homologous host Rhodococcus sp. AD45-ID, a Rhodococcus sp. AD45 strain lacking the megaplasmid which contains the isoprene metabolic gene cluster. Others were expressed in Escherichia coli and purified as fusion proteins. We describe the characterization of these purified components and demonstrate their activity when combined with Rhodococcus sp. AD45 cell lysate. Demonstration of IsoMO activity in vitro provides a platform for further biochemical and biophysical characterization of this novel soluble diiron center monooxygenase, facilitating new insights into the enzymatic basis for the bacterial degradation of isoprene. IMPORTANCE Isoprene is a highly abundant climate-active gas and a carbon source for some bacteria. Analyses of the genes encoding isoprene monooxygenase (IsoMO) indicate this enzyme is a soluble diiron center monooxygenase in the same family of oxygenases as soluble methane monooxygenase, alkene monooxygenase, and toluene monooxygenase. We report the initial biochemical characterization of IsoMO from Rhodococcus, the first from any bacterium, describing the challenging purification and reconstitution of in vitro activity of its four components. This study lays the foundation for future detailed mechanistic studies of IsoMO, a key enzyme in the global isoprene cycle.


Assuntos
Rhodococcus , Butadienos , Carbono/metabolismo , Hemiterpenos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases/metabolismo , Rhodococcus/metabolismo
17.
Implement Sci ; 16(1): 105, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922568

RESUMO

BACKGROUND: Stroke survivors often encounter occupational therapy practitioners in rehabilitation practice settings. Occupational therapy researchers have recently begun to examine the implementation strategies that promote the use of evidence-based occupational therapy practices in stroke rehabilitation; however, the heterogeneity in how occupational therapy research is reported has led to confusion about the types of implementation strategies used in occupational therapy and their association with implementation outcomes. This review presents these strategies and corresponding outcomes using uniform language and identifies the extent to which strategy selection has been guided by theories, models, and frameworks (TMFs). METHODS: A scoping review protocol was developed to assess the breadth and depth of occupational therapy literature examining implementation strategies, outcomes, and TMFs in the stroke rehabilitation field. Five electronic databases and two peer-reviewed implementation science journals were searched to identify studies meeting the inclusion criteria. Two reviewers applied the inclusion parameters and consulted with a third reviewer to achieve consensus. The 73-item Expert Recommendations for Implementing Change (ERIC) implementation strategy taxonomy guided the synthesis of implementation strategies. The Implementation Outcomes Framework guided the analysis of measured outcomes. RESULTS: The initial search yielded 1219 studies, and 26 were included in the final review. A total of 48 out of 73 discrete implementation strategies were described in the included studies. The most used implementation strategies were "distribute educational materials" (n = 11), "assess for readiness and identify barriers and facilitators" (n = 11), and "conduct educational outreach visits" (n = 10). "Adoption" was the most frequently measured implementation outcome, while "cost" was not measured in any included studies. Eleven studies reported findings supporting the effectiveness of their implementation strategy or strategies; eleven reported inconclusive findings, and four found that their strategies did not lead to improved implementation outcomes. In twelve studies, at least partially beneficial outcomes were reported, corresponding with researchers using TMFs to guide implementation strategies. CONCLUSIONS: This scoping review synthesized implementation strategies and outcomes that have been examined in occupational therapy and stroke rehabilitation. With the growth of the stroke survivor population, the occupational therapy profession must identify effective strategies that promote the use of evidence-based practices in routine stroke care and describe those strategies, as well as associated outcomes, using uniform nomenclature. Doing so could advance the occupational therapy field's ability to draw conclusions about effective implementation strategies across diverse practice settings.


Assuntos
Terapia Ocupacional , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Prática Clínica Baseada em Evidências , Humanos , Acidente Vascular Cerebral/terapia
18.
Environ Sci Technol ; 55(24): 16538-16551, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34882392

RESUMO

Prymnesium parvum is a toxin-producing microalga, which causes harmful algal blooms globally, frequently leading to massive fish kills that have adverse ecological and economic implications for natural waterways and aquaculture alike. The dramatic effects observed on fish are thought to be due to algal polyether toxins, known as the prymnesins, but their lack of environmental detection has resulted in an uncertainty about the true ichthyotoxic agents. Using qPCR, we found elevated levels of P. parvum and its lytic virus, PpDNAV-BW1, in a fish-killing bloom on the Norfolk Broads, United Kingdom, in March 2015. We also detected, for the first time, the B-type prymnesin toxins in Broads waterway samples and gill tissue isolated from a dead fish taken from the study site. Furthermore, Norfolk Broads P. parvum isolates unambiguously produced B-type toxins in laboratory-grown cultures. A 2 year longitudinal study of the Broads study site showed P. parvum blooms to be correlated with increased temperature and that PpDNAV plays a significant role in P. parvum bloom demise. Finally, we used a field trial to show that treatment with low doses of hydrogen peroxide represents an effective strategy to mitigate blooms of P. parvum in enclosed water bodies.


Assuntos
Haptófitas , Animais , Peixes , Proliferação Nociva de Algas , Estudos Longitudinais , Reino Unido
19.
BMC Biol ; 19(1): 205, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526023

RESUMO

BACKGROUND: The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. RESULTS: Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. CONCLUSIONS: Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.


Assuntos
Microbiota , Animais , Antibacterianos/farmacologia , Formigas , Evolução Biológica , RNA , Simbiose
20.
Environ Microbiol ; 23(11): 6520-6535, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390603

RESUMO

The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13 C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4 MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.


Assuntos
Metagenômica , Áreas Alagadas , Ecossistema , Metano/metabolismo , Filogenia , Microbiologia do Solo , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...