Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 4): 125184, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276909

RESUMO

The complications associated with diabetic wounds make their healing process prolonged. Hydrogels could be ideal wound dressings therefore present research was conducted to prepare silk sericin (an adhesive protein polymer) based hydrogels in combination with plant extracts and to evaluate its effectiveness against wound healing process in mice with alloxan induced diabetes. Excision wounds were formed via a biopsy puncture (6 mm). Experimental hydrogels were prepared and applied topically on the diabetic wounds. All the hydrogel treatment groups showed significantly higher (P < 0.001) percent wound contraction from day 3 to day 11 as compared to the negative diabetic control group. The serum level of anti-inflammatory cytokine (Interleukin-10) and tissue inhibitor metalloproteinase (TIMP) was significantly higher (P < 0.001), while the level of pro-inflammatory cytokines (tumor necrosis factor-α, Interleukin-6) and matrix metalloproteinases (MMP-2, MMP-9) was significantly lower (P < 0.001) in hydrogels treatment groups as compared to diabetic control group. Although all the hydrogels showed effective results, however the best results were shown by 4 % sericin+4 % banyan+4 % onion based hydrogel. It can be concluded that Sericin based hydrogel enriched with banyan and onion extracts can be used as an effective remedy for the treatment of diabetic wounds due to their high healing and regenerative properties.


Assuntos
Diabetes Mellitus Experimental , Sericinas , Animais , Camundongos , Sericinas/farmacologia , Extratos Vegetais/farmacologia , Hidrogéis/farmacologia , Cicatrização , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo
2.
Mol Divers ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645537

RESUMO

Kingella negevensis belongs to the Neisseriaceae family. It is implied that it has significant virulence potential due to RTX toxin production, which can cause hemolysis. It usually colonizes the orophayrynx of pediatric population, along with Kingella kingae but has also been isolated from vagina. Todate no report on its drug targets is present, therefore putative therapeutic targets were identified from its genomic sequence data. Traditional Chinese (n > 36,000) and Indian medicinal compounds (n > 2000) were then screened against its pyridoxine 5'-phosphate synthase, a vital therapeutic target. Prioritized TCM compounds included ZINC02525131, ZINC33833737 and ZINC85486932, and Cadiyenol, 9,11,13-Octadecatrienoic acid and 6-Gingerol from Indian medicinal library. Molecular dynamics simulation of top compounds revealed ZINC02525131 as having best stability for 100 ns, compared to Cadiyenol. ADMET profiling was then done, along with physiologically based pharmacokinetic simulation of these compounds in a population of 200 individuals, for 12 h to see fate of the ingested compound. Additionally, the impact of these compounds in a population with cirrhosis and renal impairment was also simulated. We imply in light of all the studied parameters of safety and bioavailability, etc., that 6-Gingerol from Zingiber officinalis rhizome must be proceeded further for in vitro and in vivo testing for inhibition of K. negevensis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...