Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 320(5): F972-F983, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33818125

RESUMO

Antimicrobial peptides are essential host defense mechanisms that prevent urinary tract infections. Recent studies have demonstrated that peptides in the ribonuclease A superfamily have antimicrobial activity against uropathogens and protect the urinary tract from uropathogenic Escherichia coli (UPEC). Little is known about the antibacterial function or expression of ribonuclease 4 (RNase 4) in the human urinary tract. Here, we show that full-length recombinant RNase 4 peptide and synthetic amino-terminal RNase 4 peptide fragment have antibacterial activity against UPEC and multidrug-resistant (MDR)-UPEC. RNASE4 transcript expression was detected in human kidney and bladder tissue using quantitative real-time PCR. Immunostaining or in situ hybridization localized RNase 4 expression to proximal tubules, principal and intercalated cells in the kidney's collecting duct, and the bladder urothelium. Urinary RNase 4 concentrations were quantified in healthy controls and females with a history of urinary tract infection. Compared with controls, urinary RNase 4 concentrations were significantly lower in females with a history of urinary tract infection. When RNase 4 was neutralized in human urine or silenced in vitro using siRNA, urinary UPEC replication or attachment to and invasion of urothelial and kidney medullary cells increased. These data show that RNase 4 has antibacterial activity against UPEC, is expressed in the human urinary tract, and can contribute to host defense against urinary tract infections.NEW & NOTEWORTHY Ribonuclease 4 (RNase 4) is a newly identified host defense peptide in the human kidney and bladder. RNase 4 kills uropathogenic Escherichia coli (UPEC) and multidrug-resistant UPEC. RNase 4 prevents invasive UPEC infection and suppressed RNase 4 expression may be a risk factor for more severe or recurrent urinary tract infection.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Rim/enzimologia , Ribonucleases/metabolismo , Bexiga Urinária/enzimologia , Adolescente , Peptídeos Catiônicos Antimicrobianos , Criança , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Feminino , Inativação Gênica , História Antiga , História Medieval , Humanos , Rim/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ribonucleases/genética , Ribonucleases/urina , Bexiga Urinária/metabolismo , Escherichia coli Uropatogênica , Urotélio/citologia
2.
J Am Soc Nephrol ; 30(8): 1385-1397, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31239387

RESUMO

BACKGROUND: Evidence suggests that antimicrobial peptides, components of the innate immune response, protect the kidneys and bladder from bacterial challenge. We previously identified ribonuclease 7 (RNase 7) as a human antimicrobial peptide that has bactericidal activity against uropathogenic Escherichia coli (UPEC). Functional studies assessing RNase 7's contributions to urinary tract defense are limited. METHODS: To investigate RNase 7's role in preventing urinary tract infection (UTI), we quantified urinary RNase 7 concentrations in 29 girls and adolescents with a UTI history and 29 healthy female human controls. To assess RNase 7's antimicrobial activity in vitro in human urothelial cells, we used siRNA to silence urothelial RNase 7 production and retroviral constructs to stably overexpress RNase 7; we then evaluated UPEC's ability to bind and invade these cells. For RNase 7 in vivo studies, we developed humanized RNase 7 transgenic mice, subjected them to experimental UTI, and enumerated UPEC burden in the urine, bladder, and kidneys. RESULTS: Compared with controls, study participants with a UTI history had 1.5-fold lower urinary RNase 7 concentrations. When RNase 7 was silenced in vitro, the percentage of UPEC binding or invading human urothelial cells increased; when cells overexpressed RNase 7, UPEC attachment and invasion decreased. In the transgenic mice, we detected RNase 7 expression in the kidney's intercalated cells and bladder urothelium. RNase 7 humanized mice exhibited marked protection from UPEC. CONCLUSIONS: These findings provide evidence that RNase 7 has a role in kidney and bladder host defense against UPEC and establish a foundation for investigating RNase 7 as a UTI prognostic marker or nonantibiotic-based therapy.


Assuntos
Infecções por Escherichia coli/enzimologia , Rim/enzimologia , Ribonucleases/genética , Bexiga Urinária/enzimologia , Infecções Urinárias/enzimologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica , Adolescente , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Criança , Pré-Escolar , Feminino , Inativação Gênica , Humanos , Imunidade Inata , Lactente , Rim/microbiologia , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Prognóstico , Bexiga Urinária/microbiologia , Urotélio/metabolismo , Urotélio/patologia , Adulto Jovem
3.
J Clin Invest ; 128(12): 5634-5646, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30418175

RESUMO

People with diabetes mellitus have increased infection risk. With diabetes, urinary tract infection (UTI) is more common and has worse outcomes. Here, we investigate how diabetes and insulin resistance impact the kidney's innate defenses and urine sterility. We report that type 2 diabetic mice have increased UTI risk. Moreover, insulin-resistant prediabetic mice have increased UTI susceptibility, independent of hyperglycemia or glucosuria. To identify how insulin resistance affects renal antimicrobial defenses, we genetically deleted the insulin receptor in the kidney's collecting tubules and intercalated cells. Intercalated cells, located within collecting tubules, contribute to epithelial defenses by acidifying the urine and secreting antimicrobial peptides (AMPs) into the urinary stream. Collecting duct and intercalated cell-specific insulin receptor deletion did not impact urine acidification, suppressed downstream insulin-mediated targets and AMP expression, and increased UTI susceptibility. Specifically, insulin receptor-mediated signaling regulates AMPs, including lipocalin 2 and ribonuclease 4, via phosphatidylinositol-3-kinase signaling. These data suggest that insulin signaling plays a critical role in renal antibacterial defenses.


Assuntos
Infecções Bacterianas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Túbulos Renais Coletores/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Infecções Urinárias/metabolismo , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/patologia , Túbulos Renais Coletores/microbiologia , Túbulos Renais Coletores/patologia , Camundongos , Camundongos Mutantes , Receptor de Insulina/genética , Infecções Urinárias/genética , Infecções Urinárias/patologia , alfa-Defensinas/genética , alfa-Defensinas/metabolismo
4.
J Neurosci ; 33(34): 13612-20, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966684

RESUMO

De novo mutations in the X-linked gene encoding the transcription factor methyl-CpG binding protein 2 (MECP2) are the most frequent cause of the neurological disorder Rett syndrome (RTT). Hemizygous males usually die of neonatal encephalopathy. Heterozygous females survive into adulthood but exhibit severe symptoms including microcephaly, loss of purposeful hand motions and speech, and motor abnormalities, which appear after a period of apparently normal development. Most studies have focused on male mouse models because of the shorter latency to and severity in symptoms, yet how well these mice mimic the disease in affected females is not clear. Very few therapeutic treatments have been proposed for females, the more gender-appropriate model. Here, we show that self-complementary AAV9, bearing MeCP2 cDNA under control of a fragment of its own promoter (scAAV9/MeCP2), is capable of significantly stabilizing or reversing symptoms when administered systemically into female RTT mice. To our knowledge, this is the first potential gene therapy for females afflicted with RTT.


Assuntos
Comportamento Animal/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/administração & dosagem , Síndrome de Rett/fisiopatologia , Síndrome de Rett/terapia , Animais , Comportamento Animal/fisiologia , Contagem de Células , Dependovirus/fisiologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/biossíntese , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Mutação/genética , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosfopiruvato Hidratase/metabolismo , Pletismografia , Equilíbrio Postural/genética , Equilíbrio Postural/fisiologia , Reconhecimento Psicológico/fisiologia , Respiração , Síndrome de Rett/genética , Síndrome de Rett/patologia , Teste de Desempenho do Rota-Rod
5.
Nat Biotechnol ; 29(9): 824-8, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21832997

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, with astrocytes implicated as contributing substantially to motor neuron death in familial (F)ALS. However, the proposed role of astrocytes in the pathology of ALS derives in part from rodent models of FALS based upon dominant mutations within the superoxide dismutase 1 (SOD1) gene, which account for <2% of all ALS cases. Their role in sporadic (S)ALS, which affects >90% of ALS patients, remains to be established. Using astrocytes generated from postmortem tissue from both FALS and SALS patients, we show that astrocytes derived from both patient groups are similarly toxic to motor neurons. We also demonstrate that SOD1 is a viable target for SALS, as its knockdown significantly attenuates astrocyte-mediated toxicity toward motor neurons. Our data highlight astrocytes as a non-cell autonomous component in SALS and provide an in vitro model system to investigate common disease mechanisms and evaluate potential therapies for SALS and FALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Astrócitos/patologia , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Biomarcadores , Diferenciação Celular , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Mutação , Análise de Sequência de DNA , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
6.
Mol Ther ; 19(10): 1905-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21772256

RESUMO

Stem cell-derived motor neurons (MNs) are increasingly utilized for modeling disease in vitro and for developing cellular replacement strategies for spinal cord injury and diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Human embryonic stem cell (hESC) differentiation into MNs, which involves retinoic acid (RA) and activation of the sonic hedgehog (SHH) pathway is inefficient and requires up to 60 days to develop MNs with electrophysiological properties. This prolonged differentiation process has hampered the use of hESCs, in particular for high-throughput screening. We evaluated the MN gene expression profile of RA/SHH-differentiated hESCs to identify rate-limiting factors involved in MN development. Based on this analysis, we developed an adenoviral gene delivery system encoding for MN inducing transcription factors: neurogenin 2 (Ngn2), islet-1 (Isl-1), and LIM/homeobox protein 3 (Lhx3). Strikingly, delivery of these factors induced functional MNs with mature electrophysiological properties, 11-days after gene delivery, with >60-70% efficiency from hESCs and human induced pluripotent stem cells (hiPSCs). This directed programming approach significantly reduces the time required to generate electrophysiologically-active MNs by approximately 30 days in comparison to conventional differentiation techniques. Our results further exemplify the potential to use transcriptional coding for rapid and efficient production of defined cell types from hESCs and hiPSCs.


Assuntos
Neurônios Motores/citologia , Células-Tronco Pluripotentes/patologia , Fatores de Transcrição/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Humanos , Neurônios Motores/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...