Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 1): 128267, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992917

RESUMO

In this study, chitosan/nano SiO2 (CTS/NS) was chemically modified with bisphenol A diglycidyl ether (BADGE) cross-linker-assisted hydrothermal process to create an effective adsorbent, CTS-BADGE/NS, for the removal of reactive orange 16 (RO16) dye from aquatic systems. Box-Behnken design (BBD) was used to optimize the adsorption process by varying the adsorbent dose (0.02-0.1 g/100 mL), pH (4-10), and time (20-360 min). The adsorption isotherm results indicated that the Langmuir model fits the experimental data well, suggesting that the adsorption process involves a monolayer formation of RO16 on the surface of CTS-BADGE/NS. The kinetic modeling of RO16 adsorption by CTS-BADGE/NS demonstrated that the pseudo-first-order model fits the adsorption data. CTS-BADGE/NS achieved an adsorption capacity of 97.8 mg/g for RO16 dye at optimum desirability functions of dosage 0.099 g/100 mL, solution pH of 4.44, and temperature of 25 °C. Overall, the π-π electron donor-acceptor system significantly improved the adsorption performance of the CTS-BADGE/NS. The results of the regeneration investigation demonstrate that the CTS-BADGE/NS exhibits effective adsorption of RO16, even after undergoing five consecutive cycles. The results of this study suggest that the developed CTS-BADGE/NS composite can be a promising adsorbent for water purification applications.


Assuntos
Compostos Azo , Compostos Benzidrílicos , Quitosana , Poluentes Químicos da Água , Adsorção , Compostos de Epóxi , Dióxido de Silício , Cinética , Concentração de Íons de Hidrogênio
2.
Int J Biol Macromol ; 256(Pt 2): 128463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029908

RESUMO

In this study, a new biocomposite magnetic adsorbent (magnetic glyoxal-chitosan Schiff base/organically modified montmorillonite (MCTS-GOX/OMMT)) was synthesized and employed for the adsorption of reactive blue 19 dye (RB19) from aqueous environment. The physicochemical properties of the MCTS-GOX/OMMT were confirmed by using various characterization techniques such as BET, XRD, FTIR, SEM-EDX, VSM, and pHpzc. The adsorption key variables were statistically optimized via Box-Behnken design (BBD) And accordingly the best operational conditions to achieve maximum RB19 removal were recorded at MCTS-GOX/OMMT dosage = 0.1 g/0.1 L, solution pH = 4, and working temperature = 25 °C. The adsorption process for RB19 appeared to follow the pseudo-second-order kinetic and the Langmuir isotherm models, according to the findings of the adsorption kinetics and equilibrium investigations. The maximum adsorption capacity of the MCTS-GOX/OMMT towards RB19 was 122.3 mg/g, demonstrating its preferable adsorption capability. The successful development of this novel magnetic bioadsorbent with excellent adsorption ability towards organic dyes and efficient separation ability opens possibilities for its practical application in wastewater treatment and dye removal processes.


Assuntos
Antraquinonas , Quitosana , Poluentes Químicos da Água , Adsorção , Quitosana/química , Bentonita , Corantes , Bases de Schiff/química , Glioxal/química , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Cinética , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA