Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Microvasc Res ; 154: 104686, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614154

RESUMO

Pulmonary hypertension (PH) is a chronic, progressive condition in which respiratory muscle dysfunction is a primary contributor to exercise intolerance and dyspnea in patients. Contractile function, blood flow distribution, and the hyperemic response are altered in the diaphragm with PH, and we sought to determine whether this may be attributed, in part, to impaired vasoreactivity of the resistance vasculature. We hypothesized that there would be blunted endothelium-dependent vasodilation and impaired myogenic responsiveness in arterioles from the diaphragm of PH rats. Female Sprague-Dawley rats were randomized into healthy control (HC, n = 9) and monocrotaline-induced PH rats (MCT, n = 9). Endothelium-dependent and -independent vasodilation and myogenic responses were assessed in first-order arterioles (1As) from the medial costal diaphragm in vitro. There was a significant reduction in endothelium-dependent (via acetylcholine; HC, 78 ± 15% vs. MCT, 47 ± 17%; P < 0.05) and -independent (via sodium nitroprusside; HC, 89 ± 10% vs. MCT, 66 ± 10%; P < 0.05) vasodilation in 1As from MCT rats. MCT-induced PH also diminished myogenic constriction (P < 0.05) but did not alter passive pressure responses. The diaphragmatic weakness, impaired hyperemia, and blood flow redistribution associated with PH may be due, in part, to diaphragm vascular dysfunction and thus compromised oxygen delivery which occurs through both endothelium-dependent and -independent mechanisms.

3.
Function (Oxf) ; 4(3): zqad013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168497

RESUMO

When exercising humans increase their oxygen uptake (V̇O2) 20-fold above rest the numbers are staggering: Each minute the O2 transport system - lungs, cardiovascular, active muscles - transports and utilizes 161 sextillion (10 21) O2 molecules. Leg extension exercise increases the quadriceps muscles' blood flow 100-times; transporting 17 sextillion O2 molecules per kilogram per minute from microcirculation (capillaries) to mitochondria powering their cellular energetics. Within these muscles, the capillary network constitutes a prodigious blood-tissue interface essential to exchange O2 and carbon dioxide requisite for muscle function. In disease, microcirculatory dysfunction underlies the pathophysiology of heart failure, diabetes, hypertension, pulmonary disease, sepsis, stroke and senile dementia. Effective therapeutic countermeasure design demands knowledge of microvascular/capillary function in health to recognize and combat pathological dysfunction. Dated concepts of skeletal muscle capillary (from the Latin capillus meaning 'hair') function prevail despite rigorous data-supported contemporary models; hindering progress in the field for future and current students, researchers and clinicians. Following closely the 100th anniversary of August Krogh's 1920 Nobel Prize for capillary function this Evidence Review presents an anatomical and physiological development of this dynamic field: Constructing a scientifically defensible platform for our current understanding of microcirculatory physiological function in supporting blood-mitochondrial O2 transport. New developments include: 1. Putative roles of red blood cell aquaporin and rhesus channels in determining tissue O2 diffusion. 2. Recent discoveries regarding intramyocyte O2 transport. 3. Developing a comprehensive capillary functional model for muscle O2 delivery-to-V̇O2 matching. 4. Use of kinetics analysis to discriminate control mechanisms from collateral or pathological phenomena.


Assuntos
Capilares , Oxigênio , Humanos , Microcirculação/fisiologia , Capilares/fisiologia , Consumo de Oxigênio/fisiologia , Músculo Esquelético/irrigação sanguínea , Mitocôndrias
5.
J Appl Physiol (1985) ; 134(4): 846-857, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36825642

RESUMO

In rats with type II diabetes mellitus (T2DM) compared with nondiabetic healthy controls, muscle blood flow (Q̇m) to primarily glycolytic hindlimb muscles and the diaphragm muscle are elevated during submaximal treadmill running consequent to lower skeletal muscle mass, a finding that held even when muscle mass was normalized to body mass. In rats with heart failure with reduced ejection fraction (HF-rEF) compared with healthy controls, hindlimb Q̇m was lower, whereas diaphragm Q̇m is elevated during submaximal treadmill running. Importantly, T2DM is the most common comorbidity present in patients with HF-rEF, but the effect of concurrent T2DM and HF-rEF on limb and respiratory Q̇m during exercise is unknown. We hypothesized that during treadmill running (20 m·min-1; 10% incline), hindlimb and diaphragm Q̇m would be higher in T2DM Goto-Kakizaki rats with HF-rEF (i.e., HF-rEF + T2DM) compared with nondiabetic Wistar rats with HF-rEF. Ejection fractions were not different between groups (HF-rEF: 30 ± 5; HF-rEF + T2DM: 28 ± 8%; P = 0.617), whereas blood glucose was higher in HF-rEF + T2DM (209 ± 150 mg/dL) compared with HF-rEF rats (113 ± 28 mg/dL; P = 0.040). Hindlimb muscle mass normalized to body mass was lower in rats with HF-rEF + T2DM (36.3 ± 1.6 mg/g) than in nondiabetic HF-rEF counterparts (40.3 ± 2.7 mg/g; P < 0.001). During exercise, Q̇m was elevated in rats with HF-rEF + T2DM compared with nondiabetic counterparts to the hindlimb (HF-rEF: 100 ± 28; HF-rEF + T2DM: 139 ± 23 mL·min-1·100 g-1; P < 0.001) and diaphragm (HF-rEF: 177 ± 66; HF-rEF + T2DM: 215 ± 93 mL·min-1·100g-1; P = 0.035). These data suggest that the pathophysiological consequences of T2DM on hindlimb and diaphragm Q̇m during treadmill running in the GK rat persist even in the presence of HF-rEF.NEW & NOTEWORTHY Herein, we demonstrate that rats comorbid with heart failure with reduced ejection fraction (HF-rEF) and type II diabetes mellitus (T2DM) have a higher hindlimb and respiratory muscle blood flow during submaximal treadmill running (20 m·min-1; 10% incline) compared with nondiabetic HF-rEF counterparts. These data may carry important clinical implications for roughly half of all patients with HF-rEF who present with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Ratos , Animais , Músculo Esquelético/fisiologia , Ratos Wistar , Pressão Sanguínea/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Músculos Respiratórios , Membro Posterior/fisiologia , Comorbidade
6.
Adv Physiol Educ ; 47(1): 37-41, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326476

RESUMO

Academic dishonesty is prevalent in universities in the form of cheating on examinations, with the problem being much greater in classes that have a large number of students that require close seating arrangements for in-class exams. The scenario described below was experienced during an in-class exam that included the possibility of an Honor Code violation between two students that was observed independently by three different faculty proctors. Herein we detail an objective, statistical approach taken to maintain exam and academic integrity that is compelling and transparent to students and the University Honor Council. Using the established error-similarity analysis for multiple-choice exams, it was determined that the number of identical incorrect answers found on the exams of the two individuals in question was sufficiently greater than the number expected by chance (probability of P < 0.00001). The number of total identical incorrect answers found on the remaining exams (across 65 students, n = 89 comparisons) was plotted as function of the number of total incorrect answers found on these exams (incorrect answers ranged from 1 to 22) and clearly supported that there was an Honor Code violation between the two students in question. The techniques used herein established, beyond a reasonable doubt, that a form of cheating had occurred between these students. However, caution must be taken as further investigation is requisite to establish whether the Honor Code violation was unidirectional (one student copying off the other) or bidirectional (collusion between the two students) in nature.NEW & NOTEWORTHY Academic dishonesty is prevalent in universities, especially on examinations with a large number of students in close seating arrangements. Cheating on a multiple-choice exam was suspected by observations from proctors of the examination. Application of error-similarity analysis associated with identical incorrect answers demonstrated that the probability of cheating was confirmed (P < 0.00001) between two examinees. Further comparisons with the remaining exams provided graphic evidence that a violation of the University's Honor Code had occurred.


Assuntos
Enganação , Estudantes , Humanos , Universidades
7.
Front Physiol ; 14: 1281715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187132

RESUMO

Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, respiratory muscle and cardiac impairments, and exercise intolerance. Specifically, impaired gas exchange increases work of the diaphragm; however, compromised contractile function precludes the diaphragm from meeting the increased metabolic demand of chronic hyperventilation in PH. Given that muscle contractile function is in part, dependent upon adequate blood flow (Q˙), diaphragmatic dysfunction may be predicated by an inability to match oxygen delivery with oxygen demand. We hypothesized that PH rats would demonstrate a decreased hyperemic response to contractions compared to healthy controls. Methods: Sprague-Dawley rats were randomized into healthy (HC, n = 7) or PH (n = 7) groups. PH rats were administered monocrotaline (MCT) while HC rats received vehicle. Disease progression was monitored via echocardiography. Regional and total diaphragm blood flow and vascular conductance at baseline and during 3 min of electrically-stimulated contractions were determined using fluorescent microspheres. Results: PH rats displayed morphometric and echocardiographic criteria for disease (i.e., acceleration time/ejection time, right ventricular hypertrophy). In all rats, total costal diaphragm Q˙ increased during contractions and did not differ between groups. In HC rats, there was a greater increase in medial costal Q˙ compared to PH rats (55% ± 3% vs. 44% ± 4%, p < 0.05), who demonstrated a redistribution of Q˙ to the ventral costal region. Conclusion: These findings support a redistribution of regional diaphragm perfusion and an impaired medial costal hyperemic response in PH, suggesting that PH alters diaphragm vascular function and oxygen delivery, providing a potential mechanism for PH-induced diaphragm contractile dysfunction.

8.
Physiol Rep ; 10(24): e15548, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564177

RESUMO

Solid tumors contain hypoxic regions that contribute to anticancer therapy resistance. Thus, mitigating tumor hypoxia may enhance the efficacy of radiation therapy which is commonly utilized for patients with prostate cancer. Increasing perfusion pressure in the prostate with head-up tilt (HUT) may augment prostate tumor perfusion and decrease hypoxia. The purpose of this study was to determine if an increase in the vascular hydrostatic gradient via 70° HUT increases tumor perfusion and decreases tumor hypoxia in a preclinical orthotopic model of prostate cancer. Male Copenhagen rats (n = 17) were orthotopically injected with Dunning R-3327 (AT-1) prostate adenocarcinoma cells to induce prostate tumors. After tumors were established, prostate tumor perfusion and hypoxia were measured in rats during level (0°) and 70° HUT positions. To compare the magnitude of the hydrostatic column to that present in humans, ultrasound was used to measure the heart to prostate distance in male human subjects to estimate the prostate vascular hydrostatic pressure with the upright posture. In young rats, no differences were detected in prostate tumor perfusion or prostate tumor hypoxia with 70° HUT versus the level position. However, from the retrospective study, young rats increased prostate vascular resistance to HUT, whereas aged rats lacked this response. Tumor vessels co-opted from existing functional vasculature in young rats may be sufficient to negate increases in perfusion pressure with HUT seen in aged rats. Additionally, in humans, the estimated hydrostatic column at the level of the prostate is five times greater than that of the rat. Therefore, 70° HUT may elicit increases in prostate/prostate tumor blood flow in humans that is not seen in rats.


Assuntos
Hemodinâmica , Neoplasias da Próstata , Humanos , Masculino , Ratos , Animais , Estudos Retrospectivos , Hipóxia , Perfusão , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia
10.
J Physiol ; 600(9): 2105-2125, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343594

RESUMO

Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fibre muscle afferents, which, in turn, generates reflex increases in sympathetic nerve activity (SNA) and blood pressure (the exercise pressor reflex; EPR). EPR activation in patients and animals with heart failure with reduced ejection fraction (HF-rEF) results in exaggerated increases in SNA and promotes exercise intolerance. In the healthy decerebrate rat, a subtype of acid sensing ion channel (ASIC) on the sensory endings of thin fibre muscle afferents, namely ASIC1a, has been shown to contribute to the metabolically sensitive portion of the EPR (i.e. metaboreflex), but not the mechanically sensitive portion of the EPR (i.e. the mechanoreflex). However, the role played by ASIC1a in evoking the EPR in HF-rEF is unknown. We hypothesized that, in decerebrate, unanaesthetized HF-rEF rats, injection of the ASIC1a antagonist psalmotoxin-1 (PcTx-1; 100 ng) into the hindlimb arterial supply would reduce the reflex increase in renal SNA (RSNA) evoked via 30 s of electrically induced static hindlimb muscle contraction, but not static hindlimb muscle stretch (model of mechanoreflex activation isolated from contraction-induced metabolite-production). We found that PcTx-1 reduced the reflex increase in RSNA evoked in response to muscle contraction (n = 8; mean (SD) ∫ΔRSNA pre: 1343 (588) a.u.; post: 816 (573) a.u.; P = 0.026) and muscle stretch (n = 6; ∫ΔRSNA pre: 688 (583) a.u.; post: 304 (370) a.u.; P = 0.025). Our data suggest that, in HF-rEF rats, ASIC1a contributes to activation of the exercise pressor reflex and that contribution includes a novel role for ASIC1a in mechanosensation that is not present in healthy rats. KEY POINTS: Skeletal muscle contraction results in exaggerated reflex increases in sympathetic nerve activity in heart failure patients compared to healthy counterparts, which likely contributes to increased cardiovascular risk and impaired tolerance for even mild exercise (i.e. activities of daily living) for patients suffering with this condition. Activation of acid sensing ion channel subtype 1a (ASIC1a) on the sensory endings of thin fibre muscle afferents during skeletal muscle contraction contributes to reflex increases in sympathetic nerve activity and blood pressure, at least in healthy subjects. In this study, we demonstrate that ASIC1a on the sensory endings of thin fibre muscle afferents plays a role in both the mechanical and metabolic components of the exercise pressor reflex in male rats with heart failure. The present data identify a novel role for ASIC1a in evoking the exercise pressor reflex in heart failure and may have important clinical implications for heart failure patients.


Assuntos
Canais Iônicos Sensíveis a Ácido , Insuficiência Cardíaca , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Pressão Sanguínea/fisiologia , Insuficiência Cardíaca/metabolismo , Membro Posterior , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo/fisiologia
11.
Microvasc Res ; 141: 104334, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104507

RESUMO

Pulmonary hypertension (PH) has previously been characterized as a disease of the pulmonary vasculature that subsequently results in myocardial dysfunction. Heart failure compromises skeletal muscle microvascular function, which contributes to exercise intolerance. Therefore, we tested the hypothesis that such changes might be present in PH. Thus, we investigated skeletal muscle oxygen (O2) transport in the rat model of PH to determine if O2 delivery (Q̇O2) is impaired at the level of the microcirculation as evidenced via reduced red blood cell (RBC) flux, velocity, hematocrit, and percentage of capillaries flowing in quiescent muscle. Adult male Sprague-Dawley rats were randomized into healthy (n = 9) and PH groups (n = 9). Progressive PH was induced via a one-time intraperitoneal injection of monocrotaline (MCT; 50 mg/kg) and rats were monitored weekly via echocardiography. Intravital microscopy in the spinotrapezius muscle was performed when echocardiograms confirmed moderate PH (preceding right ventricular (RV) failure). At 25 ± 9 days post-MCT, PH rats displayed RV hypertrophy (RV/(Left ventricle + Septum): 0.28 ± 0.05 vs. 0.44 ± 0.11), pulmonary congestion, and increased right ventricular systolic pressure (21 ± 8 vs. 55 ± 14 mm Hg) compared to healthy rats (all P < 0.05). Reduced capillary RBC velocity (403 ± 140 vs. 227 ± 84 µm/s; P = 0.01), RBC flux (33 ± 12 vs. 23 ± 5 RBCs/s; P = 0.04) and % of capillaries supporting continuous RBC flux at rest (79 ± 8 vs. 56 ± 13%; P = 0.01) were evident in PH rats compared to healthy rats. When Q̇O2 within a given field of view was quantified (RBC flux x % of capillaries supporting continuous RBC flux), PH rats demonstrated lower overall Q̇O2 (↓ 50%; P = 0.002). These data support that microcirculatory hemodynamic impairments (↓ Q̇O2 and therefore altered Q̇O2-to-V̇O2 matching) may compromise blood-myocyte O2 transport in PH. The mechanistic bases for decreased capillary RBC flux, velocity, and percentage of capillaries supporting RBC flow remains an important topic.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Animais , Hemodinâmica , Hipertensão Pulmonar/induzido quimicamente , Masculino , Microcirculação , Músculo Esquelético/irrigação sanguínea , Oxigênio , Ratos , Ratos Sprague-Dawley
12.
Nitric Oxide ; 121: 34-44, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123062

RESUMO

Progress in understanding physiological mechanisms often consists of discrete discoveries made across different models and species. Accordingly, understanding the mechanistic bases for how altering nitric oxide (NO) bioavailability impacts exercise tolerance (or not) depends on integrating information from cellular energetics and contractile regulation through microvascular/vascular control of O2 transport and pulmonary gas exchange. This review adopts state-of-the-art concepts including the intramyocyte power grid, the Wagner conflation of perfusive and diffusive O2 conductances, and the Critical Power/Critical Speed model of exercise tolerance to address how altered NO bioavailability may, or may not, affect physical performance. This question is germane from the elite athlete to the recreational exerciser and particularly the burgeoning heart failure (and other clinical) populations for whom elevating O2 transport and/or exercise capacity translates directly to improved life quality and reduced morbidity and mortality. The dearth of studies in females is also highlighted, and areas of uncertainty and questions for future research are identified.


Assuntos
Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Humanos , Cinética , Contração Muscular
13.
Microvasc Res ; 140: 104283, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34822837

RESUMO

Post-occlusive reactive hyperemia (PORH) is an accepted diagnostic tool for assessing peripheral macrovascular function. While conduit artery hemodynamics have been well defined, the impact of PORH on capillary hemodynamics remains unknown, despite the microvasculature being the dominant site of vascular control. Therefore, the purpose of this investigation was to determine the effects of 5 min of feed artery occlusion on capillary hemodynamics in skeletal muscle. We tested the hypothesis that, upon release of arterial occlusion, there would be: 1) an increased red blood cell flux (fRBC) and red blood cell velocity (VRBC), and 2) a decreased proportion of capillaries supporting RBC flow compared to the pre-occlusion condition. METHODS: In female Sprague-Dawley rats (n = 6), the spinotrapezius muscle was exteriorized for evaluation of capillary hemodynamics pre-occlusion, 5 min of feed artery occlusion (Occ), and 5 min of reperfusion (Post-Occ). RESULTS: There were no differences in mean arterial pressure (MAP) or capillary diameter (Dc) between pre-occlusion and post-occlusion (P > 0.05). During 30 s of PORH, capillary fRBC was increased (pre: 59 ± 4 vs. 30 s-post: 77 ± 2 cells/s; P < 0.05) and VRBC was not changed (pre: 300 ± 24 vs. 30 s post: 322 ± 25 µm/s; P > 0.05). Capillary hematocrit (Hctcap) was unchanged across the pre- to post-occlusion conditions (P > 0.05). Following occlusion, there was a 20-30% decrease in the number of capillaries supporting RBC flow at 30 s and 300 s-post occlusion (pre: 92 ± 2%; 30 s-post: 66 ± 3%; 300 s-post: 72 ± 6%; both P < 0.05). CONCLUSION: Short-term feed artery occlusion (i.e. 5 min) resulted in a more heterogeneous capillary flow profile with the presence of capillary no-reflow, decreasing the percentage of capillaries supporting RBC flow. A complex interaction between myogenic and metabolic mechanisms at the arteriolar level may play a role in the capillary no-reflow with PORH. Measurements at the level of the conduit artery mask significant alterations in blood flow distribution in the microcirculation.


Assuntos
Capilares/fisiopatologia , Hemodinâmica , Hiperemia/fisiopatologia , Microcirculação , Músculo Esquelético/irrigação sanguínea , Animais , Velocidade do Fluxo Sanguíneo , Capilares/metabolismo , Eritrócitos/metabolismo , Feminino , Hiperemia/sangue , Microscopia Intravital , Microscopia de Vídeo , Músculo Esquelético/metabolismo , Fenômeno de não Refluxo/sangue , Fenômeno de não Refluxo/fisiopatologia , Ratos Sprague-Dawley , Fatores de Tempo
14.
Nitric Oxide ; 119: 1-8, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871799

RESUMO

In heart failure with reduced ejection fraction (HFrEF), nitric oxide-soluble guanylyl cyclase (sGC) pathway dysfunction impairs skeletal muscle arteriolar vasodilation and thus capillary hemodynamics, contributing to impaired oxygen uptake (V̇O2) kinetics. Targeting this pathway with sGC activators offers a new treatment approach to HFrEF. We tested the hypotheses that sGC activator administration would increase the O2 delivery (Q̇O2)-to-V̇O2 ratio in the skeletal muscle interstitial space (PO2is) of HFrEF rats during twitch contractions due, in part, to increases in red blood cell (RBC) flux (fRBC), velocity (VRBC), and capillary hematocrit (Hctcap). HFrEF was induced in male Sprague-Dawley rats via myocardial infarction. After 3 weeks, rats were treated with 0.3 mg/kg of the sGC activator BAY 60-2770 (HFrEF + BAY; n = 11) or solvent (HFrEF; n = 9) via gavage b.i.d for 5 days prior to phosphorescence quenching (PO2is, in contracting muscle) and intravital microscopy (resting) measurements in the spinotrapezius muscle. Intravital microscopy revealed higher fRBC (70 ± 9 vs 25 ± 8 RBC/s), VRBC (490 ± 43 vs 226 ± 35 µm/s), Hctcap (16 ± 1 vs 10 ± 1%) and a greater number of capillaries supporting flow (91 ± 3 vs 82 ± 3%) in HFrEF + BAY vs HFrEF (all P < 0.05). Additionally, PO2is was especially higher during 12-34s of contractions in HFrEF + BAY vs HFrEF (P < 0.05). Our findings suggest that sGC activators improved resting Q̇O2 via increased fRBC, VRBC, and Hctcap allowing for better Q̇O2-to-V̇O2 matching during the rest-contraction transient, supporting sGC activators as a potential therapeutic to target skeletal muscle vasomotor dysfunction in HFrEF.


Assuntos
Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Capilares/metabolismo , Insuficiência Cardíaca/sangue , Hidrocarbonetos Fluorados/farmacologia , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Monitorização Transcutânea dos Gases Sanguíneos , Hemodinâmica , Masculino , Ratos Sprague-Dawley
15.
Eur J Appl Physiol ; 122(1): 7-28, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34940908

RESUMO

Resting humans transport ~ 100 quintillion (1018) oxygen (O2) molecules every second to tissues for consumption. The final, short distance (< 50 µm) from capillary to the most distant mitochondria, in skeletal muscle where exercising O2 demands may increase 100-fold, challenges our understanding of O2 transport. To power cellular energetics O2 reaches its muscle mitochondrial target by dissociating from hemoglobin, crossing the red cell membrane, plasma, endothelial surface layer, endothelial cell, interstitial space, myocyte sarcolemma and a variable expanse of cytoplasm before traversing the mitochondrial outer/inner membranes and reacting with reduced cytochrome c and protons. This past century our understanding of O2's passage across the body's final O2 frontier has been completely revised. This review considers the latest structural and functional data, challenging the following entrenched notions: (1) That O2 moves freely across blood cell membranes. (2) The Krogh-Erlang model whereby O2 pressure decreases systematically from capillary to mitochondria. (3) Whether intramyocyte diffusion distances matter. (4) That mitochondria are separate organelles rather than coordinated and highly plastic syncytia. (5) The roles of free versus myoglobin-facilitated O2 diffusion. (6) That myocytes develop anoxic loci. These questions, and the intriguing notions that (1) cellular membranes, including interconnected mitochondrial membranes, act as low resistance conduits for O2, lipids and H+-electrochemical transport and (2) that myoglobin oxy/deoxygenation state controls mitochondrial oxidative function via nitric oxide, challenge established tenets of muscle metabolic control. These elements redefine muscle O2 transport models essential for the development of effective therapeutic countermeasures to pathological decrements in O2 supply and physical performance.


Assuntos
Capilares/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Eritrócitos/metabolismo , Exercício Físico/fisiologia , Humanos , Mioglobina/metabolismo
16.
Physiol Rep ; 9(18): e15052, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34558221

RESUMO

Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fiber muscle afferents and produce reflex increases in sympathetic nerve activity and blood pressure during exercise (i.e., the exercise pressor reflex; EPR). The EPR is exaggerated in patients and animals with heart failure with reduced ejection fraction (HF-rEF) and its activation contributes to reduced exercise capacity within this patient population. Accumulating evidence suggests that the exaggerated EPR in HF-rEF is partially attributable to a sensitization of mechanically activated channels produced by thromboxane A2 receptors (TxA2 -Rs) on those sensory endings; however, this has not been investigated. Accordingly, the purpose of this investigation was to determine the role played by TxA2 -Rs on the sensory endings of thin fiber muscle afferents in the exaggerated EPR in rats with HF-rEF induced by coronary artery ligation. In decerebrate, unanesthetized rats, we found that injection of the TxA2 -R antagonist daltroban (80 µg) into the arterial supply of the hindlimb reduced the pressor response to 30 s of electrically induced 1 Hz dynamic hindlimb muscle contraction in HF-rEF (n = 8, peak ∆MAP pre: 22 ± 3; post: 14 ± 2 mmHg; p = 0.01) but not sham (n = 10, peak ∆MAP pre: 13 ± 3; post: 11 ± 2 mmHg; p = 0.68) rats. In a separate group of HF-rEF rats (n = 4), we found that the systemic (intravenous) injection of daltroban had no effect on the EPR (peak ΔMAP pre: 26 ± 7; post: 25 ± 7 mmHg; p = 0.50). Our data suggest that TxA2 -Rs on thin fiber muscle afferents contribute to the exaggerated EPR evoked in response to dynamic muscle contraction in HF-rEF.


Assuntos
Pressão Sanguínea , Insuficiência Cardíaca/metabolismo , Atividade Motora , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Reflexo , Animais , Insuficiência Cardíaca/fisiopatologia , Masculino , Contração Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Terminações Nervosas/metabolismo , Terminações Nervosas/fisiologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia
17.
Exp Physiol ; 106(10): 2070-2082, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34469618

RESUMO

NEW FINDINGS: What is the central question of this study? Does impairment in the dynamics of O2 transport in skeletal muscle during a series of contractions constitute a potential mechanism underlying reduced exercise capacity in pulmonary hypertension? What is the main finding and its importance? Pulmonary hypertension compromises the dynamic matching of skeletal muscle O2 delivery-to-utilization following contraction onset in the rat spinotrapezius muscle. These results implicate a role for vascular dysfunction in the slow V̇O2 kinetics and exercise intolerance present in pulmonary hypertension. ABSTRACT: Pulmonary hypertension (PH) is characterized by pulmonary vascular dysfunction and exercise intolerance due, in part, to compromised pulmonary and cardiac function. We tested the hypothesis that there are peripheral (i.e., skeletal muscle) aberrations in O2 delivery ( Q̇O2 )-to-O2 utilization ( V̇O2 ) matching and vascular control that might help to explain poor exercise tolerance in PH. Furthermore, we investigated the peripheral effects of nitric oxide (NO) in attenuating these decrements. Male Sprague-Dawley rats (n = 21) were administered monocrotaline (MCT; 50 mg/kg, i.p.) to induce PH. Disease progression was monitored via echocardiography. Phosphorescence quenching determined the O2 partial pressure in the interstitial space ( PO2is ) in the spinotrapezius muscle at rest and during contractions under control (SNP-) and NO-donor (sodium nitroprusside, SNP+) conditions. MCT rats displayed right ventricular (RV) hypertrophy (right ventricle/(left ventricle + septum): 0.44 (0.13) vs. 0.28 (0.05)), pulmonary congestion, increased RV systolic pressure (48 (18) vs. 20 (8) mmHg) and arterial hypoxaemia ( PaO2 : 64 (9) vs. 82 (9) mmHg) compared to healthy controls (HC) (P < 0.05). PO2is was significantly lower in MCT rats during the first 30 s of SNP- contractions. SNP superfusion elevated PO2is in both groups; however, MCT rats demonstrated a lower PO2is throughout SNP+ contractions versus HC (P < 0.05). Thus, for small muscle mass exercise in MCT rats, muscle oxygenation is impaired across the rest-to-contractions transition and exogenous NO does not raise the Q̇O2 -to- V̇O2 ratio in contracting muscle to the same levels as HC. These data support muscle Q̇O2 -to- V̇O2 mismatch as a potential contributor to slow V̇O2 kinetics and therefore exercise intolerance in PH and suggest peripheral vascular dysfunction or remodelling as a possible mechanism.


Assuntos
Hipertensão Pulmonar , Oxigênio , Animais , Hipertensão Pulmonar/metabolismo , Masculino , Contração Muscular , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
18.
J Physiol ; 599(13): 3279-3293, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101850

RESUMO

KEY POINTS: Inhibition of pancreatic ATP-sensitive K+ (KATP ) channels is the intended effect of oral sulphonylureas to increase insulin release in diabetes. However, pertinent to off-target effects of sulphonylurea medication, sex differences in cardiac KATP channel function exist, whereas potential sex differences in vascular KATP channel function remain unknown. In the present study, we assessed vascular KATP channel function (topical glibenclamide superfused onto fast-twitch oxidative skeletal muscle) supporting blood flow and interstitial O2 delivery-utilization matching ( PO2 is) during twitch contractions in male, female during pro-oestrus and ovariectomized female (F+OVX) rats. Glibenclamide decreased blood flow (convective O2 transport) and interstitial PO2 in male and female, but not F+OVX, rats. Compared to males, females also demonstrated impaired diffusive O2 transport and a faster fall in interstitial PO2 . Our demonstration, in rats, that sex differences in vascular KATP channel function exist support the tentative hypothesis that oral sulphonylureas may exacerbate exercise intolerance and morbidity, especially in premenopausal females. ABSTRACT: Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow ( Q̇m ), interstitial O2 delivery ( Q̇O2 )-utilization ( V̇O2 ) matching (i.e. interstitial-myocyte O2 flux driving pressure; PO2 is) and exercise tolerance. Potential sex differences in skeletal muscle vascular KATP channel function remain largely unexplored. We hypothesized that local skeletal muscle KATP channel inhibition via glibenclamide superfusion (5 mg kg-1 GLI; sulphonylurea diabetes medication) in anaesthetized female Sprague-Dawley rats, compared to males, would demonstrate greater reductions in contracting (1 Hz, 7 V, 180 s) fast-twitch oxidative mixed gastrocnemius (97% type IIA+IID/X+IIB) Q̇m (15 µm microspheres) and PO2 is (phosphorescence quenching), resulting from more compromised convective ( Q̇O2 ) and diffusive ( DO2  ) O2 conductances. Furthermore, these GLI-induced reductions in ovary-intact females measured during pro-oestrus would be diminished following ovariectomy (F+OVX). GLI similarly impaired mixed gastrocnemius V̇O2 in both males (↓28%) and females (↓33%, both P < 0.032) via reduced Q̇m (male: ↓31%, female: ↓35%, both P < 0.020), Q̇O2 (male: 5.6 ± 0.5 vs. 4.0 ± 0.5, female: 6.4 ± 1.1 vs. 4.2 ± 0.6 mL O2  min-1 100 g tissue-1 , P < 0.022) and the resulting PO2 is, with females also demonstrating a reduced DO2  (0.40 ± 0.07 vs. 0.30 ± 0.04 mL O2  min-1 100 g tissue-1 , P < 0.042) and a greater GLI-induced speeding of PO2 is fall (mean response time: Sex × Drug interaction, P = 0.026). Conversely, GLI did not impair the mixed gastrocnemius of F+OVX rats. Therefore, in patients taking sulphonylureas, these results support the potential for impaired vascular KATP channel function to compromise muscle Q̇m and therefore exercise tolerance. Such an effect, if present, would likely contribute to adverse cardiovascular events in premenopausal females more than males.


Assuntos
Contração Muscular , Caracteres Sexuais , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
19.
Respir Physiol Neurobiol ; 292: 103710, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091075

RESUMO

Diaphragm muscle blood flow (BF) and vascular conductance (VC) are elevated with chronic heart failure (HF) during exercise. Exercise training (ExT) elicits beneficial respiratory muscle and pulmonary system adaptations in HF. We hypothesized that diaphragm BF and VC would be lower in HF rats following ExT than their sedentary counterparts (Sed). Respiratory muscle BFs and mean arterial pressure were measured via radiolabeled microspheres and carotid artery catheter, respectively, during submaximal treadmill exercise (20 m/min, 5 % grade). During exercise, no differences were present between HF + ExT and HF + Sed in diaphragm BFs (201 ± 36 vs. 227 ± 44 mL/min/100 g) or VCs (both, p > 0.05). HF + ExT compared to HF + Sed had lower intercostal BF (27 ± 3 vs. 41 ± 5 mL/min/100 g) and VC (0.21 ± 0.02 vs. 0.31 ± 0.04 mL/min/mmHg/100 g) during exercise (both, p < 0.05). Further, HF + ExT compared to HF + Sed had lower transversus abdominis BF (20 ± 1 vs. 35 ± 6 mL/min/100 g) and VC (0.14 ± 0.02 vs. 0.27 ± 0.05 mL/min/mmHg/100 g) during exercise (both, p < 0.05). These data suggest that exercise training lowers the intercostal and transversus abdominis BF responses in HF rats during submaximal treadmill exercise.


Assuntos
Músculos Abdominais/fisiopatologia , Circulação Sanguínea/fisiologia , Diafragma/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Músculos Intercostais/fisiopatologia , Condicionamento Físico Animal/fisiologia , Músculos Abdominais/irrigação sanguínea , Animais , Diafragma/irrigação sanguínea , Modelos Animais de Doenças , Músculos Intercostais/irrigação sanguínea , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
20.
Physiol Rep ; 9(8): e14803, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33932103

RESUMO

ATP-sensitive K+ channels (KATP ) have been implicated in the regulation of resting vascular smooth muscle membrane potential and tone. However, whether KATP channels modulate skeletal muscle microvascular hemodynamics at the capillary level (the primary site for blood-myocyte O2 exchange) remains unknown. We tested the hypothesis that KATP channel inhibition would reduce the proportion of capillaries supporting continuous red blood cell (RBC) flow and impair RBC hemodynamics and distribution in perfused capillaries within resting skeletal muscle. RBC flux (fRBC ), velocity (VRBC ), and capillary tube hematocrit (Hctcap ) were assessed via intravital microscopy of the rat spinotrapezius muscle (n = 6) under control (CON) and glibenclamide (GLI; KATP channel antagonist; 10 µM) superfusion conditions. There were no differences in mean arterial pressure (CON:120 ± 5, GLI:124 ± 5 mmHg; p > 0.05) or heart rate (CON:322 ± 32, GLI:337 ± 33 beats/min; p > 0.05) between conditions. The %RBC-flowing capillaries were not altered between conditions (CON:87 ± 2, GLI:85 ± 1%; p > 0.05). In RBC-perfused capillaries, GLI reduced fRBC (CON:20.1 ± 1.8, GLI:14.6 ± 1.3 cells/s; p < 0.05) and VRBC (CON:240 ± 17, GLI:182 ± 17 µm/s; p < 0.05) but not Hctcap (CON:0.26 ± 0.01, GLI:0.26 ± 0.01; p > 0.05). The absence of GLI effects on the %RBC-flowing capillaries and Hctcap indicates preserved muscle O2 diffusing capacity (DO2 m). In contrast, GLI lowered both fRBC and VRBC thus impairing perfusive microvascular O2 transport (Q̇m) and lengthening RBC capillary transit times, respectively. Given the interdependence between diffusive and perfusive O2 conductances (i.e., %O2 extraction∝DO2 m/Q̇m), such GLI alterations are expected to elevate muscle %O2 extraction to sustain a given metabolic rate. These results support that KATP channels regulate capillary hemodynamics and, therefore, microvascular gas exchange in resting skeletal muscle.


Assuntos
Hemodinâmica , Canais KATP/metabolismo , Microcirculação , Músculo Esquelético/metabolismo , Animais , Glibureto/farmacologia , Hematócrito , Canais KATP/antagonistas & inibidores , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Consumo de Oxigênio , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...