Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16134, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37255980

RESUMO

The world's population is increasing and is anticipated to spread 10 billion by 2050, and the issue of food security is becoming a global concern. To maintain global food security, it is essential to increase crop productivity under changing climatic conditions. Conventional agricultural practices frequently use artificial/chemical fertilizers to enhance crop productivity, but these have numerous negative effects on the environment and people's health. To address these issues, researchers have been concentrating on substitute crop fertilization methods for many years, and biofertilizers as a crucial part of agricultural practices are quickly gaining popularity all over the globe. Biofertilizers are living formulations made of indigenous plant growth-promoting rhizobacteria (PGPR) which are substantial, environment-friendly, and economical biofertilizers for amassing crop productivity by enhancing plant development either directly or indirectly, and are the renewable source of plant nutrients and sustainable agronomy. The review aims to provide a comprehensive overview of the current knowledge on microbial inoculants as biofertilizers, including their types, mechanisms of action, effects on crop productivity, challenges, and limitations associated with the use of microbial inoculants. In this review, we focused on the application of biofertilizers to agricultural fields in plant growth development by performing several activities like nitrogen fixation, siderophore production, phytohormone production, nutrient solubilization, and facilitating easy uptake by crop plants. Further, we discussed the indirect mechanism of PGPRs, in developing induced system resistance against pest and diseases, and as a biocontrol agent for phytopathogens. This review article presents a brief outline of the ideas and uses of microbial inoculants in improving crop productivity as well as a discussion of the challenges and limitations to use microbial inoculants.

2.
Environ Pollut ; 310: 119855, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940485

RESUMO

Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca2+, K+, Na+, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.


Assuntos
Antioxidantes , Nanopartículas , Reguladores de Crescimento de Plantas , Espécies Reativas de Oxigênio , Silício
3.
J Appl Genet ; 62(1): 43-57, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33145639

RESUMO

Various strategies have been developed globally to conserve germplasm by propagating plants. One important technique is in vitro propagation and preservation through tissue culture. In many investigated plants, the long in vitro conservation is plagued with several limitations like genetic variations, developmental errors in cells or tissues due to induced stress. This provoked us to conduct a study of Catharanthus roseus culture maintained for over fourteen long years and a newly established 8-month-old culture. The present study investigated and compared the two tissue types differing by their age. The biomass accumulation, the biochemical differences of the two, dead cell analysis with aging via confocal microscopy, and liquid chromatography-mass spectroscopy (LC-MS)-based proteomic differences were studied in old and newly established Catharanthus culture. The proteomic study reveals more than 120 upregulated or high abundance proteins in old culture as compared to newly established Catharanthus. The identified upregulated proteins are stress protein 69, heat shock proteins (HSP), isocitrate dehydrogenase, pyruvate dehydrogenase, and others. These proteins had an association with antioxidant activities, related to stress, and a few are linked to respiration. Our study reveals the presence of a robust antioxidant defense mechanism, i.e., 51.94%, 78.8%, and 61% higher SOD, APX, and CAT activities in older cultures (O) as compared to newly established tissues (N), which perhaps act against stress and may play a key role in ameliorating negative impacts of long-term in vitro conditions. The inherent strong antioxidant defense system in old cultures added resilience and enabled the culture to revive growth quickly (within 1-2 days) following transfer to new medium as compared to new culture (7-10 days). The biomass accumulation was more (37.08 %) in old tissues as compared to new culture. The 2C DNA or genome size of C. roseus especially the 14-year-old culture-derived regenerated plant was measured by flow cytometry. The 2C DNA size of this Catharanthus (old culture) plant is 1.516 pg, which is very similar to new culture-derived plants' and field-grown plants' genome size. No anomaly in genome size was noted in plants of old culture, as opposed to common perception.


Assuntos
Antioxidantes , Catharanthus , Tamanho do Genoma , Proteínas de Choque Térmico/genética , Proteínas de Plantas/genética , Antioxidantes/fisiologia , Catharanthus/genética , Mecanismos de Defesa , Genoma de Planta , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA