Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(29): 18445-18449, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799935

RESUMO

Since the beginning of the COVID-19 pandemic, there has been an increased need for the development of novel diagnostic solutions that can accurately and rapidly detect SARS-CoV-2 infection. In this work, we demonstrate the targeting of viral oligonucleotide markers within minutes without the requirement of a polymerase chain reaction (PCR) amplification step via the use of oligonucleotide-coated upconversion nanoparticles (UCNPs) and graphene oxide (GO).

2.
ACS Sens ; 7(4): 914-928, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35377613

RESUMO

In this review, the concept of open cavity lasing for ultrasensitive sensing is explored, specifically in driving important innovations as laser-based biosensors─a field mostly dominated by fluorescence-based sensing. Laser-based sensing exhibits higher signal amplification and lower signal-to-noise ratio due to narrow emission lines as well as high sensitivity due to nonlinear components. The versatility of open cavity random lasers for probing analytes directly which is ultrasensitive to small changes in chemical composition and temperature fluctuations paves the path of utilizing narrow emission lines for advanced sensing. The concept of random lasing is first explained followed by a comparison of the different lasing threshold that has been reported. This is followed by a survey of reports on laser-based sensing and more specifically as biosensors. Finally, a perspective on the way forward for open cavity laser-based sensing is put forth.


Assuntos
Técnicas Biossensoriais , Lasers
3.
Micromachines (Basel) ; 13(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35208415

RESUMO

Germanium (Ge) ion implantation into silicon waveguides will induce lattice defects in the silicon, which can eventually change the crystal silicon into amorphous silicon and increase the refractive index from 3.48 to 3.96. A subsequent annealing process, either by using an external laser or integrated thermal heaters can partially or completely remove those lattice defects and gradually change the amorphous silicon back into the crystalline form and, therefore, reduce the material's refractive index. Utilising this change in optical properties, we successfully demonstrated various erasable photonic devices. Those devices can be used to implement a flexible and commercially viable wafer-scale testing method for a silicon photonics fabrication line, which is a key technology to reduce the cost and increase the yield in production. In addition, Ge ion implantation and annealing are also demonstrated to enable post-fabrication trimming of ring resonators and Mach-Zehnder interferometers and to implement nonvolatile programmable photonic circuits.

4.
Chem Soc Rev ; 50(23): 13410-13440, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34792047

RESUMO

The self-assembly of inorganic nanoparticles to larger structures is of great research interest as it allows the fabrication of novel materials with collective properties correlated to the nanoparticles' individual characteristics. Recently developed methods for controlling nanoparticle organisation have enabled the fabrication of a range of new materials. Amongst these, the assembly of nanoparticles using DNA has attracted significant attention due to the highly selective recognition between complementary DNA strands, DNA nanostructure versatility, and ease of DNA chemical modification. In this review we discuss the application of various chemical DNA modifications and molecular intercalators as tools for the manipulation of DNA-nanoparticle structures. In detail, we discuss how DNA modifications and small molecule intercalators have been employed in the chemical and photochemical DNA ligation in nanostructures; DNA rotaxanes and catenanes associated with reconfigurable nanoparticle assemblies; and DNA backbone modifications including locked nucleic acids, peptide nucleic acids and borane nucleic acids, which affect the stability of nanostructures in complex environments. We conclude by highlighting the importance of maximising the synergy between the communities of DNA chemistry and nanoparticle self-assembly with the aim to enrich the library of tools available for the manipulation of nanostructures.


Assuntos
Nanopartículas , Nanoestruturas , Ácidos Nucleicos , DNA , Substâncias Intercalantes
5.
Opt Express ; 29(21): 33456-33466, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809157

RESUMO

Strong absorption of the full spectrum of sunlight at high temperatures is desired for photothermal devices and thermophotovoltaics. Here, we experimentally demonstrate a thin-film broadband absorber consisting of a vanadium nitride (VN) film and a SiO2 anti-reflective layer. Owing to the intrinsic high loss of VN, the fabricated absorber exhibits high absorption over 90% in the wide range of 400-1360 nm. To further enhance the near-infrared absorption, we also propose a metamaterial absorber by depositing patterned VN square patches on the thin-film absorber. An average absorption of 90.4% over the range of 400-2500 nm is achieved due to the excitation of broad electric dipole resonance. Both thin-film and metamaterial absorbers are demonstrated to possess excellent incident angle tolerances (up to 60°) and superior thermal stability at 800 ℃. The proposed refractory VN absorbers may be potentially used for solar energy harvesting, thermal emission, and photodetection.

6.
Optica ; 8(5): 674-685, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34239949

RESUMO

Superresolution (SR) optical microscopy has allowed the investigation of many biological structures below the diffraction limit; however, most of the techniques are hampered by the need for fluorescent labels. Nonlinear label-free techniques such as second-harmonic generation (SHG) provide structurally specific contrast without the addition of exogenous labels, allowing observation of unperturbed biological systems. We use the photonic nanojet (PNJ) phenomena to achieve SR-SHG. A resolution of ∼ λ / 6 with respect to the fundamental wavelength, that is, a ∼ 2.3 -fold improvement over conventional or diffraction-limited SHG under the same imaging conditions is achieved. Crucially we find that the polarization properties of excitation are maintained in a PNJ. This is observed in experiment and simulations. This may have widespread implications to increase sensitivity by detection of polarization-resolved SHG by observing anisotropy in signals. These new, to the best of our knowledge, findings allowed us to visualize biological SHG-active structures such as collagen at an unprecedented and previously unresolvable spatial scale. Moreover, we demonstrate that the use of an array of self-assembled high-index spheres overcomes the issue of a limited field of view for such a method, allowing PNJ-assisted SR-SHG to be used over a large area. Dysregulation of collagen at the nanoscale occurs in many diseases and is an underlying cause in diseases such as lung fibrosis. Here we demonstrate that pSR-SHG allows unprecedented observation of changes at the nanoscale that are invisible by conventional diffraction-limited SHG imaging. The ability to nondestructively image SHG-active biological structures without labels at the nanoscale with a relatively simple optical method heralds the promise of a new tool to understand biological phenomena and drive drug discovery.

7.
Sci Adv ; 7(25)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34134978

RESUMO

The next generation of silicon-based photonic processors and neural and quantum networks need to be adaptable, reconfigurable, and programmable. Phase change technology offers proven nonvolatile electronic programmability; however, the materials used to date have shown prohibitively high optical losses, which are incompatible with integrated photonic platforms. Here, we demonstrate the capability of the previously unexplored material Sb2Se3 for ultralow-loss programmable silicon photonics. The favorable combination of large refractive index contrast and ultralow losses seen in Sb2Se3 facilitates an unprecedented optical phase control exceeding 10π radians in a Mach-Zehnder interferometer. To demonstrate full control over the flow of light, we introduce nanophotonic digital patterning as a previously unexplored conceptual approach with a footprint orders of magnitude smaller than state-of-the-art interferometer meshes. Our approach enables a wealth of possibilities in high-density reconfiguration of optical functionalities on silicon chip.

8.
Nano Lett ; 21(11): 4563-4569, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34015218

RESUMO

Optically and vibrationally resonant nanophotonic devices are of particular importance for their ability to enhance optomechanical interactions, with applications in nanometrology, sensing, nano-optical control of light, and optomechanics. Here, the optically resonant excitation and detection of gigahertz vibrational modes are demonstrated in a nanoscale metasurface array fabricated on a suspended SiC membrane. With the design of the main optical and vibrational modes to be those of the individual metamolecules, resonant excitation and detection are achieved by making use of direct mechanisms for optomechanical coupling. Ultrafast optical pump-probe studies reveal a multimodal gigahertz vibrational response corresponding to the mechanical modes of the suspended nanoresonators. Wavelength and polarization dependent studies reveal that the excitation and detection of vibrations takes place through the metasurface optical modes. The dielectric metasurface pushes the modulation speed of optomechanical structures closer to their theoretical limits and presents a potential for compact and easily fabricable optical components for photonic applications.

9.
Opt Lett ; 46(3): 677-680, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528439

RESUMO

Bolometers are thermal detectors widely applied in the mid-infrared (MIR) wavelength range. In an integrated sensing system on chip, a broadband scalable bolometer absorbing the light over the whole MIR wavelength range could play an important role. In this work, we have developed a waveguide-based bolometer operating in the wavelength range of 3.72-3.88 µm on the amorphous silicon (a-Si) platform. Significant improvements in the bolometer design result in a 20× improved responsivity compared to earlier work on silicon-on-insulator (SOI). The bolometer offers 24.62% change in resistance per milliwatt of input power at 3.8 µm wavelength. The thermal conductance of the bolometer is 3.86×10-5W/K, and an improvement as large as 3 orders magnitude may be possible in the future through redesign of the device geometry.

10.
Adv Mater ; 32(25): e2001534, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419202

RESUMO

New methods for achieving high-quality conducting oxide metasurfaces are of great importance for a range of emerging applications from infrared thermal control coatings to epsilon-near-zero nonlinear optics. This work demonstrates the viability of plasma patterning as a technique to selectively and locally modulate the carrier density in planar Al-doped ZnO (AZO) metasurfaces without any associated topographical surface profile. This technique stands in strong contrast to conventional physical patterning which results in nonplanar textured surfaces. The approach can open up a new route to form novel photonic devices with planar metasurfaces, for example, antireflective coatings and multi-layer devices. To demonstrate the performance of the carrier-modulated AZO metasurfaces, two types of devices are realized using the demonstrated plasma patterning. A metasurface optical solar reflector is shown to produce infrared emissivity equivalent to a conventional etched design. Second, a multiband metasurface is achieved by integrating a Au visible-range metasurface on top of the planar AZO infrared metasurface. Independent control of spectral bands without significant cross-talk between infrared and visible functionalities is achieved. Local carrier tuning of conducting oxide films offers a conceptually new approach for oxide-based photonics and nanoelectronics and opens up new routes for integrated planar metasurfaces in optical technology.

11.
Nanotechnology ; 31(32): 325202, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32340011

RESUMO

Plasmonic artificial molecules are promising platforms for linear and nonlinear optical modulation at various regimes including the visible, infrared and terahertz bands. Fano resonances in plasmonic artificial structures are widely used for controlling spectral lineshapes and tailoring of near-field and far-field optical response. Generation of a strong Fano resonance usually relies on strong plasmon coupling in densely packed plasmonic structures. Challenges in reproducible fabrication using conventional lithography significantly hinders the exploration of novel plasmonic nanostructures for strong Fano resonance. In this work, we propose a new class of plasmonic molecules with symmetric structure for Fano resonances, named evenly divided disk, which shows a strong Fano resonance due to the interference between a subradiant anti-bonding mode and a superradiant bonding mode. We successfully fabricated evenly divided disk structures with high reproducibility and with sub-20 nm gaps, using our recently developed sketch and peel lithography technique. The experimental spectra agree well with the calculated response, indicating the robustness of the Fano resonance for the evenly divided disk geometry. Control experiments reveal that the strength of the Fano resonance gradually increases when increasing the number of split parts on the disk from three to eight individual segments. The Fano-resonant plasmonic molecules that can also be reliably defined by our unique fabrication approach open up new avenues for application and provide insight into the design of artificial molecules for controlling light-matter interactions.

12.
Opt Express ; 28(7): 10386-10399, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225625

RESUMO

The survival of time-reversal symmetry in the presence of strong multiple scattering lies at the heart of some of the most robust interference effects of light in complex media. Here, the use of time-reversed light paths for imaging in highly scattering environments is investigated. A common-path Sagnac interferometer is constructed that is able to detect objects behind a layer of strongly scattering material at up to 14 mean free paths of total attenuation length. A spatial offset between the two light paths is used to suppress non-specific scattering contributions, limiting the signal to the volume of overlap. Scaling of the specific signal intensity indicates a transition from ballistic to quasi-ballistic contributions as the scattering thickness is increased. The characteristic frequency dependence for the coherent modulation signal provides a path length dependent signature, while the spatial overlap requirement allows for short-range 3D imaging. The technique of common-path, bistatic interferometry offers a conceptually novel approach that could open new applications in diverse areas such as medical imaging, machine vision, sensors, and lidar.

13.
Nano Lett ; 20(1): 329-338, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31825227

RESUMO

Deep artificial neural networks are powerful tools with many possible applications in nanophotonics. Here, we demonstrate how a deep neural network can be used as a fast, general purpose predictor of the full near-field and far-field response of plasmonic and dielectric nanostructures. A trained neural network is shown to infer the internal fields of arbitrary three-dimensional nanostructures many orders of magnitude faster compared to conventional numerical simulations. Secondary physical quantities are derived from the deep learning predictions and faithfully reproduce a wide variety of physical effects without requiring specific training. We discuss the strengths and limitations of the neural network approach using a number of model studies of single particles and their near-field interactions. Our approach paves the way for fast, yet universal, methods for design and analysis of nanophotonic systems.

14.
Opt Express ; 27(20): 29069-29081, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684648

RESUMO

We demonstrate inverse design of plasmonic nanoantennas for directional light scattering. Our method is based on a combination of full-field electrodynamical simulations via the Green dyadic method and evolutionary optimization (EO). Without any initial bias, we find that the geometries reproducibly found by EO work on the same principles as radio-frequency antennas. We demonstrate the versatility of our approach by designing various directional optical antennas for different scattering problems. EO-based nanoantenna design has tremendous potential for a multitude of applications like nano-scale information routing and processing or single-molecule spectroscopy. Furthermore, EO can help to derive general design rules and to identify inherent physical limitations for photonic nanoparticles and metasurfaces.

15.
Opt Express ; 27(15): 20965-20979, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510183

RESUMO

We demonstrate the use of deep learning for fast spectral deconstruction of speckle patterns. The artificial neural network can be effectively trained using numerically constructed multispectral datasets taken from a measured spectral transmission matrix. Optimized neural networks trained on these datasets achieve reliable reconstruction of both discrete and continuous spectra from a monochromatic camera image. Deep learning is compared to analytical inversion methods as well as to a compressive sensing algorithm and shows favourable characteristics both in the oversampling and in the sparse undersampling (compressive) regimes. The deep learning approach offers significant advantages in robustness to drift or noise and in reconstruction speed. In a proof-of-principle demonstrator we achieve real time recovery of hyperspectral information using a multi-core, multi-mode fiber array as a random scattering medium.

16.
ACS Nano ; 13(5): 5771-5777, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30958671

RESUMO

DNA-mediated self-assembly of nanoparticles has been of great interest because it enables access to nanoparticle superstructures that cannot be synthesized otherwise. However, the programmability of higher order nanoparticle structures can be easily lost under DNA denaturing conditions. Here, we demonstrate that light can be employed as an external stimulus to master the stability of nanoparticle superlattices (SLs) via the promotion of a reversible photoligation of DNA in SLs. The oligonucleotides attached to the nanoparticles are encoded to ligate using 365 nm light, effectively locking the SLs and rendering them stable under DNA denaturing conditions. The reversible process of unlocking these structures is possible by irradiation with light at 315 nm, recovering the structures to their natural state. Our work inspires an alternative research direction toward postassembly manipulation of nanoparticle superstructures using external stimuli as a tool to enrich the library of additional material forms and their application in different media and environments.


Assuntos
DNA/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanotecnologia , Oligonucleotídeos/farmacologia , DNA/efeitos da radiação , Ouro/química , Nanopartículas Metálicas/efeitos da radiação , Microscopia Eletrônica de Transmissão , Oligonucleotídeos/química , Oligonucleotídeos/efeitos da radiação
17.
Opt Express ; 26(19): 24953-24963, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469603

RESUMO

Fabrication errors pose significant challenges on silicon photonics, promoting post-fabrication trimming technologies to ensure device performance. Conventional approaches involve multiple trimming and characterization steps, impacting overall fabrication complexity. Here we demonstrate a highly accurate trimming method combining laser annealing of germanium implanted silicon waveguide and real-time monitoring of device performance. Direct feedback of the trimming process is facilitated by a differential spectroscopic technique based on photomodulation. The resonant wavelength trimming accuracy is better than 0.15 nm for ring resonators with 20-µm radius. We also realize operating point trimming of Mach-Zehnder interferometers with germanium implanted arms. A phase shift of 1.2π is achieved by annealing a 7-µm implanted segment.

18.
Nat Commun ; 9(1): 2246, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884878

RESUMO

Advanced photonic probing techniques are of great importance for the development of non-contact wafer-scale testing of photonic chips. Ultrafast photomodulation has been identified as a powerful new tool capable of remotely mapping photonic devices through a scanning perturbation. Here, we develop photomodulation maps into a quantitative technique through a general and rigorous method based on Lorentz reciprocity that allows the prediction of transmittance perturbation maps for arbitrary linear photonic systems with great accuracy and minimal computational cost. Excellent agreement is obtained between predicted and experimental maps of various optical multimode-interference devices, thereby allowing direct comparison of a device under test with a physical model of an ideal design structure. In addition to constituting a promising route for optical testing in photonics manufacturing, ultrafast perturbation mapping may be used for design optimization of photonic structures with reconfigurable functionalities.

19.
ACS Nano ; 12(6): 6273-6279, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29873479

RESUMO

The development of innovative technologies to rapidly detect biomarkers associated with nutritional deficiencies in crops is highly relevant to agriculture and thus could impact the future of food security. Zinc (Zn) is an important micronutrient in plants, and deficiency leads to poor health, quality, and yield of crops. We have developed portable sensors, based on graphene oxide and upconversion nanoparticles, which could be used in the early detection of Zn deficiency in crops, sensing mRNAs encoding members of the ZIP-transporter family in crops. ZIPs are membrane transport proteins, some of which are up-regulated at the early stages of Zn deficiency, and they are part of the biological mechanism by which crops respond to nutritional deficiency. The principle of these sensors is based on the intensity of the optical output resulting from the interaction of oligonucleotide-coated upconversion nanoparticles and graphene oxide in the absence or presence of a specific oligonucleotide target. The sensors can reliably detect mRNAs in RNA extracts from plants using a smartphone camera. Our work introduces the development of accurate and highly sensitive sensors for use in the field to determine crop nutrient status and ultimately facilitate economically important nutrient management decisions.


Assuntos
Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Grafite/química , Nanopartículas/química , Zinco/deficiência , Oligonucleotídeos/química , Tamanho da Partícula , RNA Mensageiro/análise , Propriedades de Superfície , Zinco/análise
20.
ACS Nano ; 12(4): 3333-3340, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29557641

RESUMO

The design of nanoparticulate systems which can perform multiple synergistic functions in cells with high specificity and selectivity is of great importance in applications. Here we combine recent advances in DNA-gold nanoparticle self-assembly and sensing to develop gold nanoparticle dimers that are able to perform multiplexed synergistic functions within a cellular environment. These dimers can sense two mRNA targets and simultaneously or independently deliver one or two DNA-intercalating anticancer drugs (doxorubicin and mitoxantrone) in live cells. Our study focuses on the design of sophisticated nanoparticle assemblies with multiple and synergistic functions that have the potential to advance sensing and drug delivery in cells.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas Metálicas/química , Mitoxantrona/farmacologia , RNA Mensageiro/efeitos dos fármacos , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitoxantrona/química , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...