Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 153(2): 024109, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668948

RESUMO

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and quantum information science.

2.
J Chem Theory Comput ; 16(1): 211-223, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31816237

RESUMO

We extend the range-separated double-hybrid RSH+MP2 method (Ángyán, J. G.; et al. Phys. Rev. A 2005, 72, 012510), combining long-range HF exchange and MP2 correlation with a short-range density functional to a fully self-consistent version using the optimized-effective-potential technique in which the orbitals are obtained from a local potential including the long-range HF and MP2 contributions. We test this approach, that we name RS-OEP2, on a set of small closed-shell atoms and molecules. For the commonly used value of the range-separation parameter µ = 0.5 bohr-1, we find that self-consistency does not seem to bring any improvement for total energies, ionization potentials, and electronic affinities. However, contrary to the non-self-consistent RSH+MP2 method, the present RS-OEP2 method gives a LUMO energy which physically corresponds to a neutral excitation energy and gives local exchange-correlation potentials which are reasonably good approximations to the corresponding Kohn-Sham quantities. At a finer scale, we find that RS-OEP2 gives largely inaccurate correlation potentials and correlated densities, which points to the need of further improvement of this type of range-separated double hybrids.

3.
J Chem Phys ; 151(7): 074102, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438697

RESUMO

We construct range-separated double-hybrid (RSDH) schemes which combine coupled-cluster or random-phase approximations (RPAs) with a density functional based on a two-parameter Coulomb-attenuating-method-like decomposition of the electron-electron interaction. We find that the addition of a fraction of short-range electron-electron interaction in the wave-function part of the calculation is globally beneficial for the RSDH scheme involving a variant of the RPA with exchange terms. Even though the latter scheme is globally as accurate as the corresponding scheme employing only second-order Møller-Plesset perturbation theory for atomization energies, reaction barrier heights, and weak intermolecular interactions of small molecules, it is more accurate for the more complicated case of the benzene dimer in the stacked configuration. The present RSDH scheme employing a RPA thus represents a new member in the family of double hybrids with minimal empiricism which could be useful for general chemical applications.

4.
J Chem Theory Comput ; 14(1): 154-165, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29202220

RESUMO

In this work we demonstrate that the heat bath configuration interaction (HCI) and its semistochastic extension can be used to treat relativistic effects and electron correlation on an equal footing in large active spaces to calculate the low energy spectrum of several systems including halogen group atoms (F, Cl, Br, I), coinage atoms (Cu, Au), and the neptunyl(VI) dioxide radical. This work demonstrates that despite a significant increase in the size of the Hilbert space due to spin symmetry breaking by the spin-orbit coupling terms, HCI retains the ability to discard large parts of the low importance Hilbert space to deliver converged absolute and relative energies. For instance, by using just over 107 determinants we get converged excitation energies for Au atom in an active space containing (150o,25e) which has over 1030 determinants. We also investigate the accuracy of five different two-component relativistic Hamiltonians in which different levels of approximations are made in deriving the one-electron and two-electrons Hamiltonians, ranging from Breit-Pauli (BP) to various flavors of exact two-component (X2C) theory. The relative accuracy of the different Hamiltonians are compared on systems that range in atomic number from first row atoms to actinides.

5.
J Chem Theory Comput ; 13(11): 5468-5478, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28968097

RESUMO

We use the recently developed Heat-bath Configuration Interaction (HCI) algorithm as an efficient active space solver to perform multiconfiguration self-consistent field calculations (HCISCF) with large active spaces. We give a detailed derivation of the theory and show that difficulties associated with non-variationality of the HCI procedure can be overcome by making use of the Lagrangian formulation to calculate the HCI relaxed two-body reduced density matrix. HCISCF is then used to study the electronic structure of butadiene, pentacene, and Fe-porphyrin. One of the most striking results of our work is that the converged active space orbitals obtained from HCISCF are relatively insensitive to the accuracy of the HCI calculation. This allows us to obtain nearly converged CASSCF energies with an estimated error of less than 1 mHa using the orbitals obtained from the HCISCF procedure in which the integral transformation is the dominant cost. For example, an HCISCF calculation on the Fe-porphyrin model complex with an active space of (44e, 44o) took only 412 s per iteration on a single node containing 28 cores, out of which 185 s was spent in the HCI calculation and the remaining 227 s was used mainly for integral transformation. Finally, we also show that active space orbitals can be optimized using HCISCF to substantially speed up the convergence of the HCI energy to the Full CI limit because HCI is not invariant to unitary transformations within the active space.

6.
J Chem Phys ; 145(14): 144102, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27782500

RESUMO

We introduce an orbital-optimized double-hybrid (DH) scheme using the optimized-effective-potential (OEP) method. The orbitals are optimized using a local potential corresponding to the complete exchange-correlation energy expression including the second-order Møller-Plesset correlation contribution. We have implemented a one-parameter version of this OEP-based self-consistent DH scheme using the BLYP density-functional approximation and compared it to the corresponding non-self-consistent DH scheme for calculations on a few closed-shell atoms and molecules. While the OEP-based self-consistency does not provide any improvement for the calculations of ground-state total energies and ionization potentials, it does improve the accuracy of electron affinities and restores the meaning of the LUMO orbital energy as being connected to a neutral excitation energy. Moreover, the OEP-based self-consistent DH scheme provides reasonably accurate exchange-correlation potentials and correlated densities.

7.
J Chem Theory Comput ; 12(5): 2191-202, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-26986444

RESUMO

Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.

9.
J Chem Phys ; 142(15): 154123, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25903882

RESUMO

We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Szabo and Ostlund [J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse et al., J. Chem. Phys. 135, 084119 (2011)], this works confirms range-separated RPAx-SO2 as a promising method for general chemical applications.

10.
J Chem Phys ; 142(7): 074107, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25702002

RESUMO

Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.

11.
J Chem Theory Comput ; 10(5): 1968-79, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26580524

RESUMO

Analytical forces have been derived in the Lagrangian framework for several random phase approximation (RPA) correlated total energy methods based on the range separated hybrid (RSH) approach, which combines a short-range density functional approximation for the short-range exchange-correlation energy with a Hartree-Fock-type long-range exchange and RPA long-range correlation. The RPA correlation energy has been expressed as a ring coupled cluster doubles (rCCD) theory. The resulting analytical gradients have been implemented and tested for geometry optimization of simple molecules and intermolecular charge transfer complexes, where intermolecular interactions are expected to have a non-negligible effect even on geometrical parameters of the monomers.

12.
J Chem Theory Comput ; 5(10): 2866-78, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26631798

RESUMO

A method to generate electrostatic potential (ESP) derived atomic charges in crystalline solids from periodic quantum mechanical calculations, termed the REPEAT method, is presented. Conventional ESP fitting procedures developed for molecular systems, in general, will not work for crystalline systems because the electrostatic potential in periodic systems is ill-defined up to a constant offset at each spatial position. In this work the problem is circumvented by introducing a new error functional which acts on the relative differences of the potential and not on its absolute values, as it is currently done with molecular ESP charge derivation methods. We formally demonstrate that the new functional reduces to the conventional error functional used in molecular ESP approaches when the simulation box of the periodic calculation becomes infinitely large. Several tests are presented to validate the new technique. For the periodic calculation of isolated molecules, the REPEAT charges are found to be in good agreement with those determined with established molecular ESP charge derivation methods. For siliceous sodalite, it is demonstrated that conventional molecular ESP approaches generate 'unphysical' charges, whereas the REPEAT method produces charges that are both chemically intuitive and consistent between different periodic electronic structure packages. The new approach is employed to generate partial atomic charges of various microporous materials and compared to both experimentally derived and molecular fragment ESP charges. This method can be used to generate partial atomic charges to be used in simulations of microporous and nanoporous materials, such as zeolites and metal organic framework materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...